Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Front Robot AI ; 8: 712239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485391

RESUMO

We propose a locomotion framework for bipedal robots consisting of a new motion planning method, dubbed trajectory optimization for walking robots plus (TOWR+), and a new whole-body control method, dubbed implicit hierarchical whole-body controller (IHWBC). For versatility, we consider the use of a composite rigid body (CRB) model to optimize the robot's walking behavior. The proposed CRB model considers the floating base dynamics while accounting for the effects of the heavy distal mass of humanoids using a pre-trained centroidal inertia network. TOWR+ leverages the phase-based parameterization of its precursor, TOWR, and optimizes for base and end-effectors motions, feet contact wrenches, as well as contact timing and locations without the need to solve a complementary problem or integer program. The use of IHWBC enforces unilateral contact constraints (i.e., non-slip and non-penetration constraints) and a task hierarchy through the cost function, relaxing contact constraints and providing an implicit hierarchy between tasks. This controller provides additional flexibility and smooth task and contact transitions as applied to our 10 degree-of-freedom, line-feet biped robot DRACO. In addition, we introduce a new open-source and light-weight software architecture, dubbed planning and control (PnC), that implements and combines TOWR+ and IHWBC. PnC provides modularity, versatility, and scalability so that the provided modules can be interchanged with other motion planners and whole-body controllers and tested in an end-to-end manner. In the experimental section, we first analyze the performance of TOWR+ using various bipeds. We then demonstrate balancing behaviors on the DRACO hardware using the proposed IHWBC method. Finally, we integrate TOWR+ and IHWBC and demonstrate step-and-stop behaviors on the DRACO hardware.

2.
Artif Life ; 26(1): 58-79, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32027535

RESUMO

Fine-scale evolutionary dynamics can be challenging to tease out when focused on the broad brush strokes of whole populations over long time spans. We propose a suite of diagnostic analysis techniques that operate on lineages and phylogenies in digital evolution experiments, with the aim of improving our capacity to quantitatively explore the nuances of evolutionary histories in digital evolution experiments. We present three types of lineage measurements: lineage length, mutation accumulation, and phenotypic volatility. Additionally, we suggest the adoption of four phylogeny measurements from biology: phylogenetic richness, phylogenetic divergence, phylogenetic regularity, and depth of the most-recent common ancestor. In addition to quantitative metrics, we also discuss several existing data visualizations that are useful for understanding lineages and phylogenies: state sequence visualizations, fitness landscape overlays, phylogenetic trees, and Muller plots. We examine the behavior of these metrics (with the aid of data visualizations) in two well-studied computational contexts: (1) a set of two-dimensional, real-valued optimization problems under a range of mutation rates and selection strengths, and (2) a set of qualitatively different environments in the Avida digital evolution platform. These results confirm our intuition about how these metrics respond to various evolutionary conditions and indicate their broad value.


Assuntos
Biodiversidade , Evolução Biológica , Biologia Computacional , Vida , Filogenia , Simulação por Computador , Meio Ambiente , Evolução Molecular , Mutação , Seleção Genética
3.
J Med Imaging (Bellingham) ; 5(4): 043503, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30840738

RESUMO

We assess the performance of a cadmium zinc telluride (CZT)-based Medipix3RX energy-resolving and photon-counting x-ray detector as a candidate for spectral microcomputed tomography (micro-CT) imaging. It features an array of 128 × 128 , 110 - µ m 2 pixels, each with four simultaneous threshold counters that utilize real-time charge summing. Each pixel's response is assessed by imaging with a range of incident x-ray intensities and detector integration times. Energy-related assessments are made by exposing the detector to the emission from an I-125 radioisotope brachytherapy seed. Long-term stability is assessed by repeating identical exposures over the course of 1 h. The high yield of properly functioning pixels (98.8%), long-term stability (linear regression of whole-chip response over 1 h of acquisitions: y = - 0.0038 x + 2284 ; standard deviation: 3.7 counts), and energy resolution [2.5 keV full-width half-maximum (FWHM) (single pixel), 3.7 keV FWHM (across the full image)] make this device suitable for spectral micro-CT.

4.
J Med Imaging (Bellingham) ; 4(4): 044006, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29250564

RESUMO

Changes in arterial wall perfusion mark the onset of atherosclerosis. A characteristic change is the increased spatial density of vasa vasorum (VV), the microvessels in the arterial walls. Measuring this increased VV (IVV) density using contrast-enhanced computed tomography (CT) has had limited success due to blooming effects from contrast media. If the system point-spread function (PSF) is known, then the blooming effect can be modeled as a convolution between the true signal and the PSF. We report the application of image deconvolution to improve the CT number accuracy in the arterial wall of a phantom and in a porcine model of IVV density, both scanned using a whole-body research photon-counting CT scanner. A 3D-printed carotid phantom filled with three concentrations of iodinated contrast material was scanned to assess blooming and its effect on wall CT number accuracy. The results showed a reduction in blooming effects following image deconvolution, and, consequently, a better delineation between lumen and wall was achieved. Results from the animal experiment showed improved CT number difference between the carotid with IVV density and the normal carotid artery after deconvolution, enabling the detection of VV proliferation, which may serve as an early indicator of atherosclerosis.

5.
Proc SPIE Int Soc Opt Eng ; 101322017 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-28413240

RESUMO

Changes in arterial wall perfusion are an indicator of early atherosclerosis. This is characterized by an increased spatial density of vasa vasorum (VV), the micro-vessels that supply oxygen and nutrients to the arterial wall. Detection of increased VV during contrast-enhanced computed tomography (CT) imaging is limited due to contamination from blooming effect from the contrast-enhanced lumen. We report the application of an image deconvolution technique using a measured system point-spread function, on CT data obtained from a photon-counting CT system to reduce blooming and to improve the CT number accuracy of arterial wall, which enhances detection of increased VV. A phantom study was performed to assess the accuracy of the deconvolution technique. A porcine model was created with enhanced VV in one carotid artery; the other carotid artery served as a control. CT images at an energy range of 25-120 keV were reconstructed. CT numbers were measured for multiple locations in the carotid walls and for multiple time points, pre and post contrast injection. The mean CT number in the carotid wall was compared between the left (increased VV) and right (control) carotid arteries. Prior to deconvolution, results showed similar mean CT numbers in the left and right carotid wall due to the contamination from blooming effect, limiting the detection of increased VV in the left carotid artery. After deconvolution, the mean CT number difference between the left and right carotid arteries was substantially increased at all the time points, enabling detection of the increased VV in the artery wall.

6.
Proc SPIE Int Soc Opt Eng ; 99692016 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-27795606

RESUMO

We assessed the performance of a cadmium zinc telluride (CZT)-based Medipix3RX x-ray detector as a candidate for micro-computed tomography (micro-CT) imaging. This technology was developed at CERN for the Large Hadron Collider. It features an array of 128 by 128, 110 micrometer square pixels, each with eight simultaneous threshold counters, five of which utilize real-time charge summing, significantly reducing the charge sharing between contiguous pixels. Pixel response curves were created by imaging a range of x-ray intensities by varying x-ray tube current and by varying the exposure time with fixed x-ray current. Photon energy-related assessments were made by flooding the detector with the tin foil filtered emission of an I-125 radioisotope brachytherapy seed and sweeping the energy threshold of each of the four charge-summed counters of each pixel in 1 keV steps. Long term stability assessments were made by repeating exposures over the course of one hour. The high properly-functioning pixel yield (99%), long term stability (linear regression of whole-chip response over one hour of acquisitions: y = -0.0038x + 2284; standard deviation: 3.7 counts) and energy resolution (2.5 keV FWHM (single pixel), 3.7 keV FWHM across the full image) make this device suitable for spectral micro-CT. The charge summing performance effectively reduced the measurement corruption caused by charge sharing which, when unaccounted for, shifts the photon energy assignment to lower energies, degrading both count and energy accuracy. Effective charge summing greatly improves the potential for calibrated, energy-specific material decomposition and K edge difference imaging approaches.

7.
Proc SPIE Int Soc Opt Eng ; 99672016 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-27807391

RESUMO

Early atherosclerosis changes perfusion of the arterial wall due to localized proliferation of the vasa vasorum. When contrast agent passes through the artery, some enters the vasa vasorum and increases radiopacity of the arterial wall. Technical challenges to detecting changes in vasa vasorum density include the thin arterial wall, partial volume averaging at the arterial lumen/wall interface and calcification within the wall. We used a photon-counting spectral CT scanner to study carotid arteries of anesthetized pigs and micro-CT of these arteries to quantify vasa vasorum density. The left carotid artery wall was injected with autologous blood to stimulate vasa vasorum angiogenesis. The scans were performed at 25-120 keV; the tube-current-time product was 550 mAs. A 60 mL bolus of iodine contrast agent was injected into the femoral vein at 5mL/s. Two seconds post injection, an axial scan was acquired at every 3 s over 60 s (i.e., 20 time points). Each time point acquired 28 contiguous transaxial slices with reconstructed voxels 0.16 × 0.16 × 1 mm3. Regions-of-interest in the outer 2/3 of the arterial wall and in the middle 2/3 of the lumen were drawn and their enhancements plotted versus time. Lumenal CT values peaked several seconds after injection and then returned towards baseline. Arterial wall CT values peaked concurrent to the lumen. The peak arterial wall enhancement in the left carotid arterial wall correlated with increased vasa vasorum density observed in micro-CT images of the isolated arteries.

8.
Phys Med Biol ; 61(4): 1572-95, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26835839

RESUMO

This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x-ray photon flux.


Assuntos
Fótons , Tomografia Computadorizada por Raios X/métodos , Humanos , Imagens de Fantasmas , Radiometria/instrumentação , Radiometria/métodos , Tomografia Computadorizada por Raios X/instrumentação , Raios X
9.
Invest Radiol ; 51(7): 421-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26818529

RESUMO

OBJECTIVES: The purpose of this work was to measure and compare the iodine contrast-to-noise ratio (CNR) between a commercial energy-integrating detector (EID) computed tomography (CT) system and a photon-counting detector (PCD) CT scanner capable of human imaging at clinical dose rates, as well as to determine clinical feasibility using human cadavers. MATERIALS AND METHODS: A research dual-source PCD-CT scanner was used, where the "A" tube/detector subsystem used an EID and the "B" tube/detector subsystem used a PCD. Iodine CNR was measured in 4 anthropomorphic phantoms, simulating 4 patient sizes, at 4 tube potential settings. After biospecimen committee approval, PCD scans were performed on a fresh-frozen human head and a whole-body cadaver using clinical dose rates. Scans were repeated using the EID and identical parameters, and qualitative side-by-side comparisons were performed. RESULTS: For the same photon fluence, phantom measurements demonstrated a mean increase in CNR of 11%, 23%, 31%, 38% for the PCD system, relative to the EID system, at 80, 100, 120, and 140 kV, respectively. Photon-counting detector CT additionally provided energy-selective imaging, where low- and high-energy images reflected the energy dependence of the iodine signal. Photon-counting detector images of cadaveric anatomy demonstrated decreased beam hardening and calcium blooming in the high-energy bin images and increased contrast in the low-energy bins images relative to the EID images. Threshold-based PCD images were qualitatively deemed equivalent in other aspects. CONCLUSIONS: The evaluated research PCD-CT system was capable of clinical levels of image quality at clinical dose rates. It further provided improved CNR relative to state-of-the-art EID-CT. The energy-selective bin images provide further opportunity for dual-energy and multienergy analyses.


Assuntos
Meios de Contraste , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Cadáver , Criança , Feminino , Humanos , Recém-Nascido , Iodo , Ruído , Fótons , Tomografia Computadorizada por Raios X/instrumentação
10.
J Med Imaging (Bellingham) ; 3(4): 043504, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28042589

RESUMO

An ultrahigh-resolution (UHR) data collection mode was enabled on a whole-body, research photon counting detector (PCD) computed tomography system. In this mode, 64 rows of [Formula: see text] detector pixels were used, which corresponded to a pixel size of [Formula: see text] at the isocenter. Spatial resolution and image noise were quantitatively assessed for the UHR PCD scan mode, as well as for a commercially available UHR scan mode that uses an energy-integrating detector (EID) and a set of comb filters to decrease the effective detector size. Images of an anthropomorphic lung phantom, cadaveric swine lung, swine heart specimen, and cadaveric human temporal bone were qualitatively assessed. Nearly equivalent spatial resolution was demonstrated by the modulation transfer function measurements: 15.3 and [Formula: see text] spatial frequencies were achieved at 10% and 2% modulation, respectively, for the PCD system and 14.2 and [Formula: see text] for the EID system. Noise was 29% lower in the PCD UHR images compared to the EID UHR images, representing a potential dose savings of 50% for equivalent image noise. PCD UHR images from the anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures.

11.
Ann Biomed Eng ; 43(11): 2771-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25952363

RESUMO

A combination of experimental, theoretical, and imaging methodologies is used to examine the hierarchical structure and function of intramyocardial arteriolar trees in porcine hearts to provide a window onto a region of myocardial microvasculature which has been difficult to fully explore so far. A total of 66 microvascular trees from 6 isolated myocardial specimens were analyzed, with a cumulative number of 2438 arteriolar branches greater than or equal to 40 µm lumen diameter. The distribution of flow rates within each tree was derived from an assumed power law relationship for that tree between the diameter of vessel segments and flow rates that are consistent with that power law and subject to conservation of mass along hierarchical structure of the tree. The results indicate that the power law index increases at levels of arteriolar vasculature closer to the capillary level, consistent with a concomitant decrease in shear stress acting on endothelial tissue. These results resolve a long standing predicament which could not be resolved previously because of lack of data about the 3D, interconnected, arterioles. In the context of myocardial perfusion, the results indicate that the coefficient of variation of flow rate in pre-capillary distal arterioles is high, suggesting that heterogeneity of flow rate in these arterioles is not entirely random but may be due at least in part to active control.


Assuntos
Arteríolas/fisiologia , Circulação Coronária/fisiologia , Coração/fisiologia , Miocárdio , Animais , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/fisiologia , Coração/diagnóstico por imagem , Microvasos/diagnóstico por imagem , Microvasos/fisiologia , Suínos , Microtomografia por Raio-X
12.
Invest Ophthalmol Vis Sci ; 55(9): 5834-41, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25139736

RESUMO

PURPOSE: To examine the anatomy of Schlemm's canal (SC) and collector channels (CCs) in normal human and primary open-angle glaucoma (POAG) eyes under low and high perfusion pressure. METHODS: In normal (n = 3) and POAG (n = 3) eye pairs, one eye was perfused at 10 mm Hg while the fellow eye was perfused at 20 mm Hg for 2 hours. Eyes were perfusion fixed at like pressures, dissected into quadrants, embedded in Epon Araldite, and scanned by three-dimensional micro-computed tomography (3D micro-CT). Schlemm's canal volume, CC orifice area, diameter, and number were measured using ANALYZE software. RESULTS: Normal eyes showed a larger SC volume (3.3-fold) and CC orifice area (9962.8 vs. 8825.2 µm(2)) and a similar CC diameter (34.3 ± 17.8 vs. 32.7 ± 13.0 µm) at 10 mm Hg compared to 20 mm Hg. In POAG eyes, SC volume (2.0-fold), CC orifice area (8049.2 µm(2)-6468.4 µm(2)), and CC diameter (36.2 ± 19.1 vs. 29.0 ± 13.8 µm) were increased in 10 mm Hg compared to 20 mm Hg perfusion pressures. Partial and total CC occlusions were present in normal and POAG eyes, with a 3.7-fold increase in total occlusions in POAG eyes compared to normal eyes at 20 mm Hg. Visualization of CCs increased by 24% in normal and by 21% in POAG eyes at 20 mm Hg compared to 10 mm Hg. Schlemm's canal volume, CC area, and CC diameter were decreased in POAG eyes compared to normal eyes at like pressures. CONCLUSIONS: Compensatory mechanisms for transient and short periods of increased pressure appear to be diminished in POAG eyes. Variable response to pressure change in SC and CCs may be a contributing factor to outflow facility change in POAG eyes.


Assuntos
Glaucoma de Ângulo Aberto/fisiopatologia , Pressão Intraocular/fisiologia , Malha Trabecular/patologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Malha Trabecular/anatomia & histologia
13.
J Anat ; 224(6): 724-31, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24684343

RESUMO

The liver differs from other organs in that two vascular systems deliver its blood - the hepatic artery and the portal vein. However, how the two systems interact is not fully understood. We therefore studied the microvascular geometry of rat liver hepatic artery and portal vein injected with the contrast polymer Microfil(®). Intact isolated rat livers were imaged by micro-CT and anatomic evidence for hepatic arteriolo-portal venular shunts occurring between hepatic artery and portal vein branches was found. Simulations were performed to rule out the possibility of the observed shunts being artifacts resulting from image blurring. In addition, in the case of specimens where only the portal vein was injected, only the portal vein was opacified, whereas in hepatic artery injections, both the hepatic artery and portal vein were opacified. We conclude that mixing of the hepatic artery and portal vein blood can occur proximal to the sinusoidal level, and that the hepatic arteriolo-portal venular shunts may function as a one-way valve-like mechanism, allowing flow only from the hepatic artery to the portal vein (and not the other way around).


Assuntos
Artéria Hepática/anatomia & histologia , Fígado/irrigação sanguínea , Veia Porta/anatomia & histologia , Animais , Imageamento Tridimensional , Ratos , Microtomografia por Raio-X
14.
JACC Cardiovasc Imaging ; 5(9): 935-40, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22974807

RESUMO

There is an increased body of evidence to suggest that the vasa vasorum play a major role in the progression and complications of vulnerable plaque leading to acute coronary syndrome. We propose that detecting changes in the flow in the vascular wall by intravascular ultrasound signals can quantify the presence of vasa vasorum. The results obtained in a porcine model of atherosclerosis suggest that intravascular ultrasound-based estimates of blood flow in the arterial wall can be used in vivo in a clinical research setting to establish the density of vasa vasorum as an indicator of plaque vulnerability.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Circulação Coronária , Vasos Coronários/diagnóstico por imagem , Ultrassonografia de Intervenção , Vasa Vasorum/diagnóstico por imagem , Animais , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Diagnóstico Precoce , Estudos de Viabilidade , Feminino , Placa Aterosclerótica , Valor Preditivo dos Testes , Sus scrofa , Vasa Vasorum/fisiopatologia
15.
Anat Rec (Hoboken) ; 293(9): 1607-14, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20687188

RESUMO

Structural data about the human lung fine structure are mainly based on stereological methods applied to serial sections. As these methods utilize 2D images, which are often not contiguous, they suffer from inaccuracies which are overcome by analysis of 3D micro-CT images of the never-sectioned specimen. The purpose of our study was to generate a complete data set of the intact three-dimensional architecture of the human acinus using high-resolution synchrotron-based micro-CT (synMCT). A human lung was inflation-fixed by formaldehyde ventilation and then scanned in a 64-slice CT over its apex to base extent. Lung samples (8-mm diameter, 10-mm height, N = 12) were punched out, stained with osmium tetroxide, and scanned using synMCT at (4 µm)(3) voxel size. The lung functional unit (acinus, N = 8) was segmented from the 3D tomographic image using an automated tree-analysis software program. Morphometric data of the lung were analyzed by ANOVA. Intra-acinar airways branching occurred over 11 generations. The mean acinar volume was 131.3 ± 29.2 mm(3) (range, 92.5-171.3 mm(3)) and the mean acinar surface was calculated with 1012 ± 26 cm(2). The airway internal diameter (starting from the bronchiolus terminalis) decreases distally from 0.66 ± 0.04 mm to 0.34 ± 0.06 mm (P < 0.001) and remains constant after the seventh generation (P < 0.5). The length of each generation ranges between 0.52 and 0.93 mm and did not show significant differences between the second and eleventh generation. The branching angle between daughter branches varies between 113-degree and 134-degree without significant differences between the generations (P < 0.3). This study demonstrates the feasibility of quantitating the 3D structure of the human acinus at the spatial resolution readily achievable using synMCT.


Assuntos
Imageamento Tridimensional , Pulmão/anatomia & histologia , Microtomografia por Raio-X , Adulto , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional/métodos , Pulmão/diagnóstico por imagem , Masculino , Software , Síncrotrons
16.
J Comput Assist Tomogr ; 34(2): 273-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20351520

RESUMO

OBJECTIVE: This study is motivated by the possibility of using computed tomography (CT) to detect early coronary atherosclerosis by the increased CT values within the arterial wall resulting from vasa vasorum proliferation. METHODS: Coronary arteries (n = 5) with early atherosclerotic changes were injected with Microfil and scanned (micro-CT). Noise was added to the CT projection data sets (to represent the radiation exposure of current clinical CT scanners) and then reconstructed to generate 3-dimensional images at different voxel sizes. RESULTS: Higher CT values were detected because of contrast agent in vasa vasorum if voxel size was less than (150 microm)(3). Contrast in the main lumen increased the CT values dramatically at voxels greater than (100 microm)(3), whereas CT values of the same specimen without contrast in the main lumen remained constant. CONCLUSIONS: Voxel sizes less than (200 microm)(3) are needed to quantitate arterial wall opacification due to vasa vasorum proliferation.


Assuntos
Angiografia Coronária/métodos , Vasos Coronários/anatomia & histologia , Tomografia Computadorizada por Raios X/métodos , Vasa Vasorum/anatomia & histologia , Cadáver , Humanos , Imageamento Tridimensional , Técnicas In Vitro , Interpretação de Imagem Radiográfica Assistida por Computador , Análise de Regressão , Vasa Vasorum/diagnóstico por imagem , Microtomografia por Raio-X
17.
Med Phys ; 37(12): 6317-22, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21302788

RESUMO

PURPOSE: It has been shown that coherently scattered x rays can be used to discriminate and identify specific components in a mixture of low atomic weight materials. The authors demonstrated a new method of doing coherently scattered x-ray tomography with a thin sheet of x ray. METHODS: A collimated x-ray fan-beam, a parallel polycapillary collimator, and a phantom consisting of several biocompatible materials of low attenuation-based contrast were used to investigate the feasibility of the method. Because of the particular experimental setup, only the phantom translation perpendicular to the x-ray beam is needed and, thus, there is no need of Radon-type tomographic reconstruction, except for the correction of the attenuation to the primary and scattered x rays, which was performed by using a conventional attenuation-based tomographic image data set. The coherent scatter image contrast changes with momentum transfer among component materials in the specimen were investigated with multiple x-ray sources with narrow bandwidth spectra generated with anode and filter combinations of Cu/Ni (8 keV), Mo/Zr (18 keV), and Ag/Pd (22 keV) and at multiple scatter angles by orienting the detector and polycapillary collimator at different angles to the illuminating x ray. RESULTS: The contrast among different materials changes with the x-ray source energy and the angle at which the image was measured. The coherent scatter profiles obtained from the coherent scatter images are consistent with the published results. CONCLUSIONS: This method can be used to directly generate the three-dimensional coherent scatter images of small animal, biopsies, or other small objects with low atomic weight biological or similar synthetic materials with low attenuation contrast. With equipment optimized, submillimeter spatial resolution may be achieved.


Assuntos
Imageamento Tridimensional/métodos , Espalhamento de Radiação , Microtomografia por Raio-X/métodos , Imageamento Tridimensional/instrumentação , Microtomografia por Raio-X/instrumentação
19.
Tissue Eng Part A ; 15(8): 1989-99, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19196145

RESUMO

The objective of this study was to investigate the influence of pore geometry on the transport rate and depth after repetitive mechanical deformation of porous scaffolds for tissue engineering applications. Flexible cubic imaging phantoms with pores in the shape of a circular cylinder, elliptic cylinder, and spheroid were fabricated from a biodegradable polymer blend using a combined 3D printing and injection molding technique. The specimens were immersed in fluid and loaded with a solution of a radiopaque solute. The solute distribution was quantified by recording 20 microm pixel-resolution images in an X-ray microimaging scanner at selected time points after intervals of dynamic straining with a mean strain of 8.6+/-1.6% at 1.0 Hz. The results show that application of cyclic strain significantly increases the rate and depth of solute transport, as compared to diffusive transport alone, for all pore shapes. In addition, pore shape, pore size, and the orientation of the pore cross-sectional asymmetry with respect to the direction of strain greatly influence solute transport. Thus, pore geometry can be tailored to increase transport rates and depths in cyclically deformed scaffolds, which is of utmost importance when thick, metabolically functional tissues are to be engineered.


Assuntos
Movimento (Física) , Alicerces Teciduais/química , Força Compressiva , Ciclização , Iodo , Imagens de Fantasmas , Porosidade , Microtomografia por Raio-X , Raios X
20.
Anat Rec (Hoboken) ; 290(3): 277-83, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17525936

RESUMO

The three-dimensional architecture of nephrons in situ and their interrelationship with other nephrons are difficult to visualize by microscopic methods. The present study uses microcomputed X-ray tomography (micro-CT) to visualize intact nephrons in situ. Rat kidneys were perfusion-fixed with buffered formalin and their vasculature was subsequently perfused with radiopaque silicone. Cortical tissue was stained en bloc with osmium tetroxide, embedded in plastic, scanned, and reconstructed at voxel resolutions of 6, 2, and 1 microm. At 6 microm resolution, large blood vessels and glomeruli could be visualized but nephrons and their lumens were small and difficult to visualize. Optimal images were obtained using a synchrotron radiation source at 2 microm resolution where nephron components could be identified, correlated with histological sections, and traced. Proximal tubules had large diameters and opaque walls, whereas distal tubules, connecting tubules, and collecting ducts had smaller diameters and less opaque walls. Blood vessels could be distinguished from nephrons by the luminal presence of radiopaque silicone. Proximal tubules were three times longer than distal tubules. Proximal and distal tubules were tightly coiled in the outer cortex but were loosely coiled in the middle and inner cortex. The connecting tubules had the narrowest diameters of the tubules and converged to form arcades that paralleled the radial vessels as they extended to the outer cortex. These results illustrate a potential use of micro-CT to obtain three-dimensional information about nephron architecture and nephron interrelationships, which could be useful in evaluating experimental tubular hypertrophy, atrophy, and necrosis.


Assuntos
Simulação por Computador , Imageamento Tridimensional , Microcomputadores , Modelos Anatômicos , Néfrons/anatomia & histologia , Tomografia Computadorizada por Raios X/instrumentação , Animais , Estudos de Viabilidade , Glomérulos Renais/anatomia & histologia , Glomérulos Renais/diagnóstico por imagem , Túbulos Renais Distais/anatomia & histologia , Túbulos Renais Distais/diagnóstico por imagem , Túbulos Renais Proximais/anatomia & histologia , Túbulos Renais Proximais/diagnóstico por imagem , Masculino , Néfrons/irrigação sanguínea , Néfrons/diagnóstico por imagem , Tetróxido de Ósmio , Ratos , Ratos Sprague-Dawley , Coloração e Rotulagem/métodos , Síncrotrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...