Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081238

RESUMO

The performance of modern laser-driven inertial confinement fusion (ICF) experiments is degraded by contamination of the deuterium-tritium (DT) fuel with high-Z material during compression. Simulations suggest that this mix can be described by the ion temperature distribution of the implosion, given that such contaminants deviate in temperature from the surrounding DT plasma. However, existing neutron time-of-flight (nTOF) diagnostics only measure the spatially integrated ion temperature. This paper describes the techniques and forward modeling used to develop a novel diagnostic imaging system to measure the spatially resolved ion temperature of an ICF implosion for the first time. The technique combines methods in neutron imaging and nTOF diagnostics to measure the ion temperature along one spatial dimension at yields currently achievable on the OMEGA laser. A detailed forward model of the source and imaging system was developed to guide instrument design. The model leverages neutron imaging reconstruction algorithms, radiation hydrodynamics and Monte Carlo simulations, optical ray tracing, and more. The results of the forward model agree with the data collected on OMEGA using the completed diagnostic. The analysis of the experimental data is still ongoing and will be discussed in a separate publication.

2.
Rev Sci Instrum ; 89(10): 10I127, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399819

RESUMO

The current construction of a new nuclear-imaging view at the National Ignition Facility will provide a third line of sight for hotspot and cold fuel imaging and the first dedicated line of sight for 4.4-MeV γ-ray imaging of the remaining carbon ablator. To minimize the effort required to hold and align apertures inside the vacuum chamber, the apertures for the two lines of sight will be contained in the same array. In this work, we discuss the system requirements for neutron and γ-ray imaging and the resulting aperture array design.

3.
Rev Sci Instrum ; 85(11): 11E122, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430301

RESUMO

The Gamma-to-Electron Magnetic Spectrometer (GEMS) diagnostic is designed to measure the prompt γ-ray energy spectrum during high yield deuterium-tritium (DT) implosions at the National Ignition Facility (NIF). The prompt γ-ray spectrum will provide "burn-averaged" observables, including total DT fusion yield, total areal density (ρR), ablator ρR, and fuel ρR. These burn-averaged observables are unique because they are essentially averaged over 4π, providing a global reference for the line-of-sight-specific measurements typical of x-ray and neutron diagnostics. The GEMS conceptual design meets the physics-based requirements: ΔE/E = 3%-5% can be achieved in the range of 2-25 MeV γ-ray energy. Minimum DT neutron yields required for 15% measurement uncertainty at low-resolution mode are: 5 × 10(14) DT-n for ablator ρR (at 0.2 g/cm(2)); 2 × 10(15) DT-n for total DT yield (at 4.2 × 10(-5) γ/n); and 1 × 10(16) DT-n for fuel ρR (at 1 g/cm(2)).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...