Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genet ; 17(1): 91, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27342071

RESUMO

BACKGROUND: The effects of different evolutionary forces are expected to lead to the conservation, over many generations, of particular genomic regions (haplotypes) due to the development of linkage disequilibrium (LD). The detection and identification of early (ancestral) haplotypes can be used to clarify the evolutionary dynamics of different populations as well as identify selection signatures and genomic regions of interest to be used both in conservation and breeding programs. The aims of this study were to develop a simple procedure to identify ancestral haplotypes segregating across several generations both within and between populations with genetic links based on whole-genome scanning. This procedure was tested with simulated and then applied to real data from different genotyped populations of Spanish, Fleckvieh, Simmental and Brown-Swiss cattle. RESULTS: The identification of ancestral haplotypes has shown coincident patterns of selection across different breeds, allowing the detection of common regions of interest on different bovine chromosomes and mirroring the evolutionary dynamics of the studied populations. These regions, mainly located on chromosomes BTA5, BTA6, BTA7 and BTA21 are related with certain animal traits such as coat colour and milk protein and fat content. CONCLUSION: In agreement with previous studies, the detection of ancestral haplotypes provides useful information for the development and comparison of breeding and conservation programs both through the identification of selection signatures and other regions of interest, and as indicator of the general genetic status of the populations.


Assuntos
Evolução Molecular , Haplótipos , Gado/genética , Animais , Bovinos , Feminino , Variação Genética , Masculino , Modelos Genéticos
2.
BMC Genomics ; 16: 283, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25881165

RESUMO

BACKGROUND: In recent years, the use of genomic information in livestock species for genetic improvement, association studies and many other fields has become routine. In order to accommodate different market requirements in terms of genotyping cost, manufacturers of single nucleotide polymorphism (SNP) arrays, private companies and international consortia have developed a large number of arrays with different content and different SNP density. The number of currently available SNP arrays differs among species: ranging from one for goats to more than ten for cattle, and the number of arrays available is increasing rapidly. However, there is limited or no effort to standardize and integrate array- specific (e.g. SNP IDs, allele coding) and species-specific (i.e. past and current assemblies) SNP information. RESULTS: Here we present SNPchiMp v.3, a solution to these issues for the six major livestock species (cow, pig, horse, sheep, goat and chicken). Original data was collected directly from SNP array producers and specific international genome consortia, and stored in a MySQL database. The database was then linked to an open-access web tool and to public databases. SNPchiMp v.3 ensures fast access to the database (retrieving within/across SNP array data) and the possibility of annotating SNP array data in a user-friendly fashion. CONCLUSIONS: This platform allows easy integration and standardization, and it is aimed at both industry and research. It also enables users to easily link the information available from the array producer with data in public databases, without the need of additional bioinformatics tools or pipelines. In recognition of the open-access use of Ensembl resources, SNPchiMp v.3 was officially credited as an Ensembl E!mpowered tool. Availability at http://bioinformatics.tecnoparco.org/SNPchimp.


Assuntos
Bases de Dados Genéticas , Polimorfismo de Nucleotídeo Único , Animais , Bovinos , Biologia Computacional , Genoma , Cabras/genética , Internet , Especificidade da Espécie , Interface Usuário-Computador
3.
J Dairy Sci ; 96(5): 3272-84, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23477823

RESUMO

Genomic preselection of young bulls is now widely implemented in dairy breeding schemes, especially in the Holstein breed. However, if this step is not accounted for in genetic evaluation models, the national breeding values of bulls retained by a genomic preselection and of their progeny are estimated with bias. It follows that countries participating in international genetic evaluations will provide a selected and possibly biased set of data to the Interbull Centre (Swedish University of Agricultural Sciences, Uppsala, Sweden). The objective of the study was to show evidence of bias at the international level due to a genomic preselection step in national breeding schemes. The consequence of a genomic preselection for the international evaluations (i.e., using selected and biased national estimated breeding values) was simulated using actual national estimated breeding values as a proxy for genomically enhanced breeding values. Data were provided for 3 countries with a large population of Holstein bulls. International breeding values from simulated scenarios were compared with international breeding values using all available data, assumed to be complete and unbiased. Bias was measured among young bulls retained by a genomic preselection and their contemporaries in other countries. The results were analyzed by traits measured within each country and by country of origin of the young bulls. It turned out that sending preselected data, though based on genomic information, created bias in international evaluations, penalizing young bulls from the country sending the incorrect data. It also had an effect on the young bulls from the other countries. Sending biased data further affected the quality of international evaluations. This study underlines the importance of accounting for genomic preselection at the national level first. Moreover, submitting all available data appeared essential to maintain the quality of the international genetic evaluations after implementation of a genomic preselection step.


Assuntos
Cruzamento/normas , Bovinos/genética , Indústria de Laticínios/métodos , Animais , Cruzamento/métodos , Genômica/métodos , Genômica/normas , Masculino , Modelos Genéticos , Característica Quantitativa Herdável
4.
BMC Genet ; 13: 82, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-23031427

RESUMO

BACKGROUND: The genome-wide association study (GWAS) is a useful approach to identify genes affecting economically important traits in dairy cattle. Here, we report the results from a GWAS based on high-density SNP genotype data and estimated breeding values for nine production, fertility, body conformation, udder health and workability traits in the Brown Swiss cattle population that is part of the international genomic evaluation program. RESULT: GWASs were performed using 50 k SNP chip data and deregressed estimated breeding values (DEBVs) for nine traits from between 2061 and 5043 bulls that were part of the international genomic evaluation program coordinated by Interbull Center. The nine traits were milk yield (MY), fat yield (FY), protein yield (PY), lactating cow's ability to recycle after calving (CRC), angularity (ANG), body depth (BDE), stature (STA), milk somatic cell score (SCS) and milk speed (MSP). Analyses were performed using a linear mixed model correcting for population confounding. A total of 74 SNPs were detected to be genome-wide significantly associated with one or several of the nine analyzed traits. The strongest signal was identified on chromosome 25 for milk production traits, stature and body depth. Other signals were on chromosome 11 for angularity, chromosome 24 for somatic cell score, and chromosome 6 for milking speed. Some signals overlapped with earlier reported QTL for similar traits in other cattle populations and were located close to interesting candidate genes worthy of further investigations. CONCLUSIONS: Our study shows that international genetic evaluation data is a useful resource for identifying genetic factors influencing complex traits in livestock. Several genome wide significant association signals could be identified in the Brown Swiss population, including a major signal on BTA25. Our findings report several associations and plausible candidate genes that deserve further exploration in other populations and molecular dissection to explore the potential economic impact and the genetic mechanisms underlying these production traits in cattle.


Assuntos
Cruzamento , Bovinos/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Animais , Tamanho Corporal , Genoma , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...