Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 50(5): 1754-1765, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33459323

RESUMO

The Cu2(1,4-diazacycloheptane)2Cl4 (CuHpCl) crystal is a molecular transition metal antiferromagnetic complex, whose magnetism has been a long-lasting issue. The outcome of a variety of experimental studies (on magnetic susceptibility, heat capacity, magnetization, spin gap and INS) reported many different J values depending on the fitting ladder model used. From all available experimental data, one can infer that CuHpCl is a very complex system with many competing microscopic magnetic JAB interactions that lead to its overall antiferromagnetic behavior. A first-principles bottom-up study of CuHpCl is thus necessary in order to fully disentangle its magnetism. Here we incorporate data from ab initio computations providing the magnitude of the JAB interactions to investigate the microscopic magnetic couplings in CuHpCl and, ultimately, to understand the macroscopic magnetic behavior of this crystal. Strikingly, the resulting magnetic topology can be pictured as a 3D network of interacting squared plaquette magnetic building blocks, which does not agree with the suggested ladder motif (with uniform rails) that arises from direct observation of the crystal packing. The computed magnetic susceptibility, heat capacity and magnetization data show good agreement with the experimental data. In spite of this agreement, only the calculated magnetization data are used to discriminate between the different spin regimes in CuHpCl, namely gapped singlet, partially polarized and fully polarized phases. Additional analysis of the magnetic wavefunction enables the conclusion that long-range spin correlation can be discarded as being responsible for the partially polarized phase, whose magnetic response is in fact due to the complex interplay of the magnetic moments in the 3D magnetic topology.

2.
Chem Soc Rev ; 40(6): 3182-212, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21321725

RESUMO

The state-of-the-art theoretical evaluation and rationalization of the magnetic interactions (J(AB)) in molecule-based magnets is discussed in this critical review, focusing first on isolated radical···radical pair interactions and afterwards on how these interactions cooperate in the solid phase. Concerning isolated radical pairwise magnetic interactions, an initial analysis is done on qualitative grounds, concentrating also on the validity of the most commonly used models to predict their size and angularity (namely, McConnell-I and McConnell-II models, overlap of magnetic orbitals,…). The failure of these models, caused by their oversimplified description of the magnetic interactions, prompted the introduction of quantitative approaches, whose basic principles and relative quality are also evaluated. Concerning the computation of magnetic interactions in solids, we resort to a sum of pairwise magnetic interactions within the Heisenberg Hamiltonian framework, and follow the First-principles Bottom-Up procedure, which allows the accurate study of the magnetic properties of any molecule-based magnet in an unbiased way. The basic principles of this approach are outlined, applied in detail to a model system, and finally demonstrated to properly describe the magnetic properties of molecule-based systems that show a variety of magnetic topologies, which range from 1D to 3D (152 references).

3.
Inorg Chem ; 49(4): 1750-60, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20088489

RESUMO

On the basis of magnetic susceptibility and heat capacity data, copper pyrazine dinitrate crystal [abbreviated CuPz(NO(3))(2)] has long been considered a good prototype for S = (1)/(2) antiferromagnetic (AFM) Heisenberg chain behavior down to 0.05 K. However, a recent muon-spin rotation experiment indicated the presence of a previously unnoticed 1D to 3D magnetic transition below 0.107 K. Our aim in this work is to perform a rigorous quantitative study of the mechanism of this 1D-3D magnetic transformation, by doing a first-principles bottom-up study of the CuPz(NO(3))(2) crystal at 158 K, where the magnetic properties are clearly 1D, and at 2 K, at which the neutron structure (reported in this work) is considered nearly identical with that below 0.1 K (due to small thermal effects). A change in the magnetic topology is found between these two structures: at 158 K, there are isolated AFM spin chains (J(intra) = -5.23 cm(-1)), while at 2 K, the magnetic chains (J(intra) = -5.96 cm(-1)) weakly interact (the largest of the J(inter) parameters is -0.09 cm(-1)). This change is caused by thermal contraction upon cooling (no crystallographic phase transition is detected down to 2 K, and one will not likely occur below that temperature). The computed and experimental magnetic susceptibility chi(T) curves are nearly identical. The calculated heat capacity C(p)(T) curve has a maximum at 6.92 K, close to the 5.20 K maximum found in the experimental curve at zero external field. In spite of the 3D magnetic topology of the crystal at low temperature, the magnetic susceptibility and heat capacity curves behave as a pure 1D AFM chain in all regions because of the large J(intra)/J(inter) ratio (66.2 in absolute value) and the effect of including the J(inter) interactions will not be easily appreciated in any of these experiments. The impact of the presence of odd- and even-membered regular AFM finite chains in the CuPz(NO(3))(2) crystal has also been evaluated. Odd-membered interacting chains produce an increase in both chi(T) and C(p)(T) curves when the temperature is very close to zero, in agreement with the experimental observations, while even-membered chains produce a small shoulder in the C(p)(T) curve between 0.8 and 5 K. No changes are seen in the remaining regions. Concerning the spin gap, odd-membered chains present a quasi-zero gap but the finite even-membered chains still have a sizable one. Finally, the effect of increasing the magnitude of J(inter) was investigated by fixing the value of J(intra) to that found for the 2 K CuPz(NO(3))(2) crystal. The magnetic susceptibility and heat capacity curves remain practically unchanged.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...