Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 1): 130604, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447843

RESUMO

Skin, the largest organ in the body, blocks the entry of environmental pollutants into the system. Any injury to this organ allows infections and other harmful substances into the body. 3D bioprinting, a state-of-the-art technique, is suitable for fabricating cell culture scaffolds to heal chronic wounds rapidly. This study uses starch extracted from Maranta arundinacea (Arrowroot plant) (AS) and gellan gum (GG) to develop a bioink for 3D printing a scaffold capable of hosting animal cells. Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction analysis (XRD) prove that the isolated AS is analogous to commercial starch. The cell culture scaffolds developed are superior to the existing monolayer culture. Infrared microscopy shows the AS-GG interaction and elucidates the mechanism of hydrogel formation. The physicochemical properties of the 3D-printed scaffold are analyzed to check the cell adhesion and growth; SEM images have confirmed that the AS-GG printed scaffold can support cell growth and proliferation, and the MTT assay shows good cell viability. Cell behavioral and migration studies reveal that cells are healthy. Since the scaffold is biocompatible, it can be 3D printed to any shape and structure and will biodegrade in the requisite time.


Assuntos
Marantaceae , Polissacarídeos Bacterianos , Alicerces Teciduais , Animais , Alicerces Teciduais/química , Amido , Cicatrização , Impressão Tridimensional , Engenharia Tecidual , Hidrogéis/farmacologia
2.
J Genet Eng Biotechnol ; 20(1): 14, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35080679

RESUMO

BACKGROUND: The marine environment hosts a wide variety of species that have evolved to live in harsh and challenging conditions. Marine organisms are the focus of interest due to their capacity to produce biotechnologically useful compounds. They are promising biocatalysts for new and sustainable industrial processes because of their resistance to temperature, pH, salt, and contaminants, representing an opportunity for several biotechnological applications. Encouraged by the extensive and richness of the marine environment, marine organisms' role in developing new therapeutic benefits is heading as an arable field. There is currently much interest in biologically active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Studies are focused on bacteria and fungi, isolated from sediments, seawater, fish, algae, and most marine invertebrates such as sponges, mollusks, tunicates, coelenterates, and crustaceans. In addition to marine macro-organisms, such as sponges, algae, or corals, marine bacteria and fungi have been shown to produce novel secondary metabolites (SMs) with specific and intricate chemical structures that may hold the key to the production of novel drugs or leads. The marine environment is known as a rich source of chemical structures with numerous beneficial health effects. Presently, several lines of studies have provided insight into biological activities and neuroprotective effects of marine algae, including antioxidant, anti-neuroinflammatory, cholinesterase inhibitory activity, and neuronal death inhibition. CONCLUSION: The application of marine-derived bioactive compounds has gained importance because of their therapeutic uses in several diseases. Marine natural products (MNPs) display various pharmaceutically significant bioactivities, including antibiotic, antiviral, neurodegenerative, anticancer, or anti-inflammatory properties. The present review focuses on the importance of critical marine bioactive compounds and their role in different diseases and highlights their possible contribution to humanity.

3.
Curr Pharm Des ; 28(9): 679-689, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34525928

RESUMO

Implantable microfluidic devices are milestones in developing devices that can measure parameters like ocular pressure and blood glucose level or deliver various components for therapeutic needs or behavioral modification. Researchers are currently focusing on the miniaturization of almost all its tools for a better healthcare platform. Implantable microfluidic devices are a combination of various systems including, but not limited to, microfluidic platforms, reservoirs, sensors, and actuators, implanted inside the body of a living entity (in vivo) with the purpose of directly or indirectly helping the entity. It is a multidisciplinary approach with immense potential in the area of the biomedical field. Significant resources are utilized for the research and development of these devices for various applications. The induction of an implantable microfluidic device into an animal would enable us to measure the responses without any repeated invasive procedures. Such data would help in the development of a better drug delivery profile. Implantable microfluidic devices with reservoirs deliver specific chemical or biological products to treat situations like cancers and diabetes. They can also deliver fluorophores for specific imaging inside the body. Implantable microfluidic devices help provide a microenvironment for various cell differentiation procedures. These devices know no boundaries, and this article reviews these devices based on their design and applications.


Assuntos
Diabetes Mellitus , Dispositivos Lab-On-A-Chip , Animais , Corantes Fluorescentes , Humanos , Microfluídica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...