Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosystems ; 235: 105113, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159671

RESUMO

Studies in the literature have demonstrated the significance of the synchronization of neuronal electrical activity for signal transmission and information encoding. In light of this importance, we investigate the synchronization of the Chay neuron model using both theoretical analysis and numerical simulations. The Chay model is chosen for its comprehensive understanding of neuronal behavior and computational efficiency. Additionally, we explore the impact of electromagnetic induction, leading to the magnetic flux Chay neuron model. The single neuron model exhibits rich and complex dynamics for various parameter choices. We explore the bifurcation structure of the model through bifurcation diagrams and Lyapunov exponents. Subsequently, we extend our study to two coupled magnetic flux Chay neurons, identifying mode locking and structures reminiscent of Arnold's tongue. We evaluate the stability of the synchronized manifold using Lyapunov theory and confirm our findings through simulations. Expanding our study to networks of diffusively coupled flux Chay neurons, we observe coherent, incoherent, and imperfect chimera patterns. Our investigation of three network types highlights the impact of network topology on the emergent dynamics of the Chay neuron network. Regular networks exhibit diverse patterns, small-world networks demonstrate a critical transition to coherence, and random networks showcase synchronization at specific coupling strengths. These findings significantly contribute to our understanding of the synchronization patterns exhibited by the magnetic flux Chay neuron. To assess the synchronization stability of the Chay neuron network, we employ master stability function analysis.


Assuntos
Modelos Neurológicos , Neurônios , Neurônios/fisiologia , Potenciais de Ação/fisiologia
2.
Biosystems ; 234: 105069, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37939869

RESUMO

This study focuses on the synchronization analysis of Hindmarsh-Rose neurons coupled through a common memristor (coupled mHRN). Initially, we thoroughly examine the synchronization of two mHRNs coupled via a common memristor before exploring synchronization in a network of mHRNs. The stability of the proposed model is analyzed in three cases, demonstrating the existence of a single equilibrium point whose stability is influenced by external stimuli. The stable and unstable regions are investigated using eigenvalues. Through bifurcation analysis and the determination of maximum Lyapunov exponents, we identify chaotic and hyperchaotic trajectories. Additionally, using the next-generation matrix method, we calculate the chaotic number C0, demonstrating the influence of coupling strength on the chaotic and hyperchaotic behavior of the system. The exponential stability of the synchronous mHRN is derived analytically using Lyapunov theory, and our results are verified through numerical simulations. Furthermore, we explore the impact of initial conditions and memristor synapses, as well as the coupling coefficient, on the synchronization of coupled mHRN. Finally, we investigate a network consisting of n number of mHRNs and observe various collective behaviors, including incoherent, coherent, traveling patterns, traveling wave chimeras, and imperfect chimeras, which are determined by the memristor coupling coefficient.


Assuntos
Dinâmica não Linear , Sinapses , Neurônios/fisiologia , Análise por Conglomerados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...