Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soc Work Public Health ; : 1-10, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967051

RESUMO

The purpose of this study was to understand how masculinity and race impact mental health among Black male graduate students. A qualitative study using in-depth interviews recruited Black male graduate students enrolled at a private university in the southern United States. Data were collected over zoom and recorded. Interviews were transcribed and the data were analyzed for similar themes. Twenty-nine Black male graduate students 23 to 51 were recruited. Participants reported the three main elements that impacted their mental health were (1) expectations, (2) pressure, and (3) being strong. These findings suggest that colleges need to develop programming to help Black men learn how to handle racial discrimination in positive ways. Additionally, findings also highlight the need for culturally relevant mental health services that let Black men know seeking help is ok and is what men do.

4.
Cell ; 185(22): 4190-4205.e25, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36243004

RESUMO

Neuroepithelial crosstalk is critical for gut physiology. However, the mechanisms by which sensory neurons communicate with epithelial cells to mediate gut barrier protection at homeostasis and during inflammation are not well understood. Here, we find that Nav1.8+CGRP+ nociceptor neurons are juxtaposed with and signal to intestinal goblet cells to drive mucus secretion and gut protection. Nociceptor ablation led to decreased mucus thickness and dysbiosis, while chemogenetic nociceptor activation or capsaicin treatment induced mucus growth. Mouse and human goblet cells expressed Ramp1, receptor for the neuropeptide CGRP. Nociceptors signal via the CGRP-Ramp1 pathway to induce rapid goblet cell emptying and mucus secretion. Notably, commensal microbes activated nociceptors to control homeostatic CGRP release. In the absence of nociceptors or epithelial Ramp1, mice showed increased epithelial stress and susceptibility to colitis. Conversely, CGRP administration protected nociceptor-ablated mice against colitis. Our findings demonstrate a neuron-goblet cell axis that orchestrates gut mucosal barrier protection.


Assuntos
Colite , Células Caliciformes , Camundongos , Humanos , Animais , Células Caliciformes/metabolismo , Nociceptores/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Colite/metabolismo , Muco/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo
6.
Redox Biol ; 14: 316-327, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29017115

RESUMO

The present review is a sequel to the previous review on cancer metabolism published in this journal. This review focuses on the selective antiproliferative and cytotoxic effects of mitochondria-targeted therapeutics (MTTs) in cancer cells. Emerging research reveals a key role of mitochondrial respiration on tumor proliferation. Previously, a mitochondria-targeted nitroxide was shown to selectively inhibit colon cancer cell proliferation at submicromolar levels. This review is centered on the therapeutic use of MTTs and their bioenergetic profiling in cancer cells. Triphenylphosphonium cation conjugated to a parent molecule (e.g., vitamin-E or chromanol, ubiquinone, and metformin) via a linker alkyl chain is considered an MTT. MTTs selectively and potently inhibit proliferation of cancer cells and, in some cases, induce cytotoxicity. MTTs inhibit mitochondrial complex I activity and induce mitochondrial stress in cancer cells through generation of reactive oxygen species. MTTs in combination with glycolytic inhibitors synergistically inhibit tumor cell proliferation. This review discusses how signaling molecules traditionally linked to tumor cell proliferation affect tumor metabolism and bioenergetics (glycolysis, TCA cycle, and glutaminolysis).


Assuntos
Antineoplásicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Compostos Organofosforados/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Terapia de Alvo Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Compostos Organofosforados/química , Consumo de Oxigênio/efeitos dos fármacos
7.
Chem Rev ; 117(15): 10043-10120, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28654243

RESUMO

Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.


Assuntos
Antineoplásicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/tratamento farmacológico , Compostos Organofosforados/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Compostos Organofosforados/síntese química , Compostos Organofosforados/química
8.
J Neuroimmune Pharmacol ; 11(2): 259-78, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26838361

RESUMO

Mitochondrial dysfunction, oxidative stress and neuroinflammation have been implicated as key mediators contributing to the progressive degeneration of dopaminergic neurons in Parkinson's disease (PD). Currently, we lack a pharmacological agent that can intervene in all key pathological mechanisms, which would offer better neuroprotective efficacy than a compound that targets a single degenerative mechanism. Herein, we investigated whether mito-apocynin (Mito-Apo), a newly-synthesized and orally available derivative of apocynin that targets mitochondria, protects against oxidative damage, glial-mediated inflammation and nigrostriatal neurodegeneration in cellular and animal models of PD. Mito-Apo treatment in primary mesencephalic cultures significantly attenuated the 1-methyl-4-phenylpyridinium (MPP(+))-induced loss of tyrosine hydroxylase (TH)-positive neuronal cells and neurites. Mito-Apo also diminished MPP(+)-induced increases in glial cell activation and inducible nitric oxide synthase (iNOS) expression. Additionally, Mito-Apo decreased nitrotyrosine (3-NT) and 4-hydroxynonenol (4-HNE) levels in primary mesencephalic cultures. Importantly, we assessed the neuroprotective property of Mito-Apo in the MPTP mouse model of PD, wherein it restored the behavioral performance of MPTP-treated mice. Immunohistological analysis of nigral dopaminergic neurons and monoamine measurement further confirmed the neuroprotective effect of Mito-Apo against MPTP-induced nigrostriatal dopaminergic neuronal loss. Mito-Apo showed excellent brain bioavailability and also markedly attenuated MPTP-induced oxidative markers in the substantia nigra (SN). Furthermore, oral administration of Mito-Apo significantly suppressed MPTP-induced glial cell activation, upregulation of proinflammatory cytokines, iNOS and gp91phox in IBA1-positive cells of SN. Collectively, these results demonstrate that the novel mitochondria-targeted compound Mito-Apo exhibits profound neuroprotective effects in cellular and pre-clinical animal models of PD by attenuating oxidative damage and neuroinflammatory processes.


Assuntos
Acetofenonas/uso terapêutico , Antioxidantes/uso terapêutico , Neurônios Dopaminérgicos/efeitos dos fármacos , Mediadores da Inflamação/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Transtornos Parkinsonianos/prevenção & controle , Acetofenonas/química , Acetofenonas/farmacologia , Animais , Animais Recém-Nascidos , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Antioxidantes/química , Antioxidantes/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Resultado do Tratamento
9.
Genes Dis ; 3(1): 82-87, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28066797

RESUMO

Autophagy is a cellular self-eating process essential for stress response and maintaining tissue homeostasis by lysosomal degradation of unwanted or damaged proteins and organelles. Here, we show that cells with defective mitochondria induce autophagy to promote cell survival through activating the AMPK pathway. Loss of mitochondrial complex III protein cytochrome b activates the AMPK signaling and induced autophagy. Inhibiting mitochondria energetics by mitochondria-targeted agents activates the AMPK signaling and induced autophagy. Genetic inhibition of AMPK inhibits autophagy induction in cells with defective mitochondria, while genetic inhibition of autophagy has no effect on AMPK activation. Mitochondria dysfunction has no effect of DNA repair of UV-induced DNA damage. However, mitochondria dysfunction sensitizes cells to apoptosis induced by UV radiation. Genetic inhibition of autophagy or AMPK sensitized cells to apoptosis in cells with defective mitochondria. Our results demonstrate that AMPK and autophagy senses mitochondria dysfunction and serves as a mechanism for survival. Our findings may provide new insights into the interplay between mitochondria function and autophagy process in maintaining tissue homeostasis, and suggest that this interaction may play important roles in diseases such as cancer and neurodegeneration.

10.
Cancer Lett ; 365(1): 96-106, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26004344

RESUMO

One of the proposed mechanisms for tumor proliferation involves redox signaling mediated by reactive oxygen species such as superoxide and hydrogen peroxide generated at moderate levels. Thus, the antiproliferative and anti-tumor effects of certain antioxidants were attributed to their ability to mitigate intracellular reactive oxygen species (ROS). Recent reports support a role for mitochondrial ROS in stimulating tumor cell proliferation. In this study, we compared the antiproliferative effects and the effects on mitochondrial bioenergetic functions of a mitochondria-targeted cationic carboxyproxyl nitroxide (Mito-CP), exhibiting superoxide dismutase (SOD)-like activity and a synthetic cationic acetamide analog (Mito-CP-Ac) lacking the nitroxide moiety responsible for the SOD activity. Results indicate that both Mito-CP and Mito-CP-Ac potently inhibited tumor cell proliferation. Both compounds altered mitochondrial and glycolytic functions, and intracellular citrate levels. Both Mito-CP and Mito-CP-Ac synergized with 2-deoxy-glucose (2-DG) to deplete intracellular ATP, inhibit cell proliferation and induce apoptosis in pancreatic cancer cells. We conclude that mitochondria-targeted cationic agents inhibit tumor proliferation via modification of mitochondrial bioenergetics pathways rather than by dismutating and detoxifying mitochondrial superoxide.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Óxidos N-Cíclicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neoplasias/metabolismo , Neoplasias/patologia , Compostos Organofosforados/farmacologia , Superóxido Dismutase/farmacologia , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Cátions , Desoxiglucose/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Glicólise/efeitos dos fármacos , Humanos , Células MCF-7 , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Transdução de Sinais/efeitos dos fármacos , Superóxidos/metabolismo , Fatores de Tempo
11.
Neurosci Lett ; 583: 159-64, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25263790

RESUMO

Recently, we demonstrated that dimeric apocynin prevented loss of motor function in the leucine-rich repeat kinase 2 (LRRK2(R1441G)) transgenic (tg) mouse (treated with 200mg/kg, three times per week) [B.P. Dranka et al., Neurosci. Lett. 549 (2013) 57-62]. Here we extend those studies by treating LRRK2(R1441G) mice with an orally-available, mitochondrially-targeted apocynin derivative. We hypothesized that the increased mitochondrial permeability of Mito-apocynin, due to the triphenylphosphonium moiety, would allow improvement of Parkinson's disease (PD) symptoms at lower doses than those required for diapocynin. Tests of motor coordination (pole test, Rotor-Rod) revealed a significant deficit in coordinated motor function in LRRK2(R1441G) mice by 15 months of age. Decreased performance on the pole test and Rotor-Rod in the LRRK2(R1441G) mice was prevented with Mito-apocynin treatment (3mg/kg, three times per week). Decreased olfactory function is an early indication of PD in human patients. LRRK2(R1441G) tg mice displayed deficits in sense of smell in both the hidden treat test, and a radial arm maze test. Interestingly, treatment with Mito-apocynin prevented this hyposmia, and animals retained normal ability to identify either a scented treat or a food pellet as well as wild type littermates. Together, these data demonstrate that the mitochondria-targeted apocynin analog is effective in preventing early PD-like symptoms in the LRRK2(R1441G) mouse model.


Assuntos
Acetofenonas/uso terapêutico , Mitocôndrias/metabolismo , Transtornos do Olfato/prevenção & controle , Doença de Parkinson/tratamento farmacológico , Proteínas Serina-Treonina Quinases/genética , Acetofenonas/química , Animais , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos Transgênicos , Destreza Motora/efeitos dos fármacos , Transtornos do Olfato/psicologia , Compostos Organofosforados/química , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Doença de Parkinson/psicologia
12.
J Biol Chem ; 289(32): 22536-53, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24928516

RESUMO

Hydroperoxides of amino acid and amino acid residues (tyrosine, cysteine, tryptophan, and histidine) in proteins are formed during oxidative modification induced by reactive oxygen species. Amino acid hydroperoxides are unstable intermediates that can further propagate oxidative damage in proteins. The existing assays (oxidation of ferrous cation and iodometric assays) cannot be used in real-time measurements. In this study, we show that the profluorescent coumarin boronic acid (CBA) probe reacts with amino acid and protein hydroperoxides to form the corresponding fluorescent product, 7-hydroxycoumarin. 7-Hydroxycoumarin formation was catalase-independent. Based on this observation, we have developed a fluorometric, real-time assay that is adapted to a multiwell plate format. This is the first report showing real-time monitoring of amino acid and protein hydroperoxides using the CBA-based assay. This approach was used to detect protein hydroperoxides in cell lysates obtained from macrophages exposed to visible light and photosensitizer (rose bengal). We also measured the rate constants for the reaction between amino acid hydroperoxides (tyrosyl, tryptophan, and histidine hydroperoxides) and CBA, and these values (7-23 M(-1) s(-1)) were significantly higher than that measured for H2O2 (1.5 M(-1) s(-1)). Using the CBA-based competition kinetics approach, the rate constants for amino acid hydroperoxides with ebselen, a glutathione peroxidase mimic, were also determined, and the values were within the range of 1.1-1.5 × 10(3) M(-1) s(-1). Both ebselen and boronates may be used as small molecule scavengers of amino acid and protein hydroperoxides. Here we also show formation of tryptophan hydroperoxide from tryptophan exposed to co-generated fluxes of nitric oxide and superoxide. This observation reveals a new mechanism for amino acid and protein hydroperoxide formation in biological systems.


Assuntos
Aminoácidos/análise , Fluorometria/métodos , Proteínas/análise , Aminoácidos/química , Azóis , Ácidos Borônicos , Sistemas Computacionais , Cumarínicos , Corantes Fluorescentes , Isoindóis , Compostos Organosselênicos , Peróxidos/análise , Peróxidos/química , Proteínas/química
13.
J Biol Chem ; 289(23): 16176-89, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24764302

RESUMO

Recent progress characterizing the reaction mechanism(s) of fluorescent probes with reactive oxygen species has made it possible to rigorously analyze these reactive species in biological systems. We have developed rapid high throughput-compatible assays for monitoring cellular production of superoxide radical anion and hydrogen peroxide using hydropropidine and coumarin boronic acid probes, respectively. Coupling plate reader-based fluorescence measurements with HPLC-based simultaneous monitoring of superoxide radical anion and hydrogen peroxide provides the basis for the screening protocol for NADPH oxidase (Nox) inhibitors. Using this newly developed approach along with the medium-throughput plate reader-based oximetry and EPR spin trapping as confirmatory assays, it is now eminently feasible to rapidly and reliably identify Nox enzyme inhibitors with a markedly lower rate of false positives. These methodological advances provide an opportunity to discover selective inhibitors of Nox isozymes, through enhanced conceptual understanding of their basic mechanisms of action.


Assuntos
Inibidores Enzimáticos/análise , Ensaios de Triagem em Larga Escala , Peróxido de Hidrogênio/análise , NADPH Oxidases/antagonistas & inibidores , Superóxidos/análise , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Células HEK293 , Células HL-60 , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Espectrometria de Massas , NADPH Oxidases/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Marcadores de Spin , Superóxidos/metabolismo , Superóxidos/farmacologia
14.
PLoS One ; 8(10): e77129, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130844

RESUMO

Previously we showed that Protein kinase A (PKA) activated in hypoxia and myocardial ischemia/reperfusion mediates phosphorylation of subunits I, IVi1 and Vb of cytochrome c oxidase. However, the mechanism of activation of the kinase under hypoxia remains unclear. It is also unclear if hypoxic stress activated PKA is different from the cAMP dependent mitochondrial PKA activity reported under normal physiological conditions. In this study using RAW 264.7 macrophages and in vitro perfused mouse heart system we investigated the nature of PKA activated under hypoxia. Limited protease treatment and digitonin fractionation of intact mitochondria suggests that higher mitochondrial PKA activity under hypoxia is mainly due to increased sequestration of PKA Catalytic α (PKAα) subunit in the mitochondrial matrix compartment. The increase in PKA activity is independent of mitochondrial cAMP and is not inhibited by adenylate cyclase inhibitor, KH7. Instead, activation of hypoxia-induced PKA is dependent on reactive oxygen species (ROS). H89, an inhibitor of PKA activity and the antioxidant Mito-CP prevented loss of CcO activity in macrophages under hypoxia and in mouse heart under ischemia/reperfusion injury. Substitution of wild type subunit Vb of CcO with phosphorylation resistant S40A mutant subunit attenuated the loss of CcO activity and reduced ROS production. These results provide a compelling evidence for hypoxia induced phosphorylation as a signal for CcO dysfunction. The results also describe a novel mechanism of mitochondrial PKA activation which is independent of mitochondrial cAMP, but responsive to ROS.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Estresse Oxidativo , Animais , Antioxidantes/farmacologia , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Ativação Enzimática/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutação , Isquemia Miocárdica/enzimologia , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
15.
PLoS One ; 8(8): e70575, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940596

RESUMO

Several front-line chemotherapeutics cause mitochondria-derived, oxidative stress-mediated cardiotoxicity. Iron chelators and other antioxidants have not completely succeeded in mitigating this effect. One hindrance to the development of cardioprotectants is the lack of physiologically-relevant animal models to simultaneously study antitumor activity and cardioprotection. Therefore, we optimized a syngeneic rat model and examined the mechanisms by which oxidative stress affects outcome. Immune-competent spontaneously hypertensive rats (SHRs) were implanted with passaged, SHR-derived, breast tumor cell line, SST-2. Tumor growth and cytokine responses (IL-1A, MCP-1, TNF-α) were observed for two weeks post-implantation. To demonstrate the utility of the SHR/SST-2 model for monitoring both anticancer efficacy and cardiotoxicity, we tested cardiotoxic doxorubicin alone and in combination with an established cardioprotectant, dexrazoxane, or a nitroxide conjugated to a triphenylphosphonium cation, Mito-Tempol (4) [Mito-T (4)]. As predicted, tumor reduction and cardiomyopathy were demonstrated by doxorubicin. We confirmed mitochondrial accumulation of Mito-T (4) in tumor and cardiac tissue. Dexrazoxane and Mito-T (4) ameliorated doxorubicin-induced cardiomyopathy without altering the antitumor activity. Both agents increased the pro-survival autophagy marker LC3-II and decreased the apoptosis marker caspase-3 in the heart, independently and in combination with doxorubicin. Histopathology and transmission electron microscopy demonstrated apoptosis, autophagy, and necrosis corresponding to cytotoxicity in the tumor and cardioprotection in the heart. Changes in serum levels of 8-oxo-dG-modified DNA and total protein carbonylation corresponded to cardioprotective activity. Finally, 2D-electrophoresis/mass spectrometry identified specific serum proteins oxidized under cardiotoxic conditions. Our results demonstrate the utility of the SHR/SST-2 model and the potential of mitochondrially-directed agents to mitigate oxidative stress-induced cardiotoxicity. Our findings also emphasize the novel role of specific protein oxidation markers and autophagic mechanisms for cardioprotection.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Dexrazoxano/uso terapêutico , Compostos Organofosforados/uso terapêutico , Piperidinas/uso terapêutico , Animais , Antioxidantes/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Oxirredução/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR
16.
Anticancer Drugs ; 24(9): 881-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23872912

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. Mito-carboxy proxyl (Mito-CP), a lipophilic cationic nitroxide, accumulates in the mitochondria because of the large negative transmembrane potential. Studies have shown that these agents act by disrupting the energy-producing mechanism, inducing mitochondrial-mediated apoptosis, and also enhancing the action of other chemotherapeutic agents in cancer cells. We hypothesized that the combination of Mito-CP and glycolysis inhibitor, 2-deoxyglucose (2-DG), would synergistically inhibit HCC in vitro. HepG2 cells and primary hepatocytes were treated with various combinations of Mito-CP and 2-DG. Cell cytotoxicity was measured using the methylthiazolyldiphenyl-tetrazolium bromide assay and ATP bioluminescence assay. In addition, caspase 3/7 enzymatic activity was examined after treatment. Mito-CP and 2-DG induced synergistic cytotoxicity in HepG2 cells in a dose-dependent and time-dependent manner, whereas primary cells remained viable and unaffected after treatment. The intracellular ATP levels of HepG2 cells were suppressed within 6 h of combination treatment, whereas primary cells maintained higher levels of ATP. Dose-dependent increases in caspase 3/7 activity occurred in HepG2 cells in a time-dependent manner, showing the initiation of cell death through the apoptotic pathway. These findings indicate that a combination of Mito-CP and 2-DG effectively inhibits HCC growth in vitro. The increase in caspase 3/7 activity supports the occurrence of 2-DG-induced and Mito-CP-induced apoptotic death in HCC. The inability of the compounds to induce cytotoxicity or suppress the production of ATP in primary hepatocytes provides a selective and synergistic approach for the treatment of HCC.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Glicólise/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Mitocôndrias Hepáticas/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Antineoplásicos/efeitos adversos , Antioxidantes/efeitos adversos , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Óxidos N-Cíclicos/efeitos adversos , Óxidos N-Cíclicos/farmacologia , Desoxiglucose/efeitos adversos , Desoxiglucose/farmacologia , Sinergismo Farmacológico , Inibidores Enzimáticos/efeitos adversos , Células Hep G2 , Humanos , Cinética , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/metabolismo , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/metabolismo , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Compostos Organofosforados/efeitos adversos , Compostos Organofosforados/farmacologia
17.
BMC Cancer ; 13: 285, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23764021

RESUMO

BACKGROUND: Recent research has revealed that targeting mitochondrial bioenergetic metabolism is a promising chemotherapeutic strategy. Key to successful implementation of this chemotherapeutic strategy is the use of new and improved mitochondria-targeted cationic agents that selectively inhibit energy metabolism in breast cancer cells, while exerting little or no long-term cytotoxic effect in normal cells. METHODS: In this study, we investigated the cytotoxicity and alterations in bioenergetic metabolism induced by mitochondria-targeted vitamin E analog (Mito-chromanol, Mito-ChM) and its acetylated ester analog (Mito-ChMAc). Assays of cell death, colony formation, mitochondrial bioenergetic function, intracellular ATP levels, intracellular and tissue concentrations of tested compounds, and in vivo tumor growth were performed. RESULTS: Both Mito-ChM and Mito-ChMAc selectively depleted intracellular ATP and caused prolonged inhibition of ATP-linked oxygen consumption rate in breast cancer cells, but not in non-cancerous cells. These effects were significantly augmented by inhibition of glycolysis. Mito-ChM and Mito-ChMAc exhibited anti-proliferative effects and cytotoxicity in several breast cancer cells with different genetic background. Furthermore, Mito-ChM selectively accumulated in tumor tissue and inhibited tumor growth in a xenograft model of human breast cancer. CONCLUSIONS: We conclude that mitochondria-targeted small molecular weight chromanols exhibit selective anti-proliferative effects and cytotoxicity in multiple breast cancer cells, and that esterification of the hydroxyl group in mito-chromanols is not a critical requirement for its anti-proliferative and cytotoxic effect.


Assuntos
Neoplasias da Mama/metabolismo , Cromanos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Vitamina E/análogos & derivados , Vitamina E/farmacologia , Animais , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Neurosci Lett ; 549: 57-62, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23721786

RESUMO

The most prominent mechanism proposed for death of dopaminergic neurons in Parkinson's disease (PD) is elevated generation of reactive oxygen/nitrogen species (ROS/RNS). Recent studies suggest that ROS produced during PD pathogenesis may contribute to cytotoxicity in cell culture models of PD. We hypothesized that inhibition of ROS production would prevent PD symptoms in the LRRK2(R1441G) transgenic (tg) mouse model of PD. These mice overexpress a mutant form of leucine-rich repeat kinase 2 (LRRK2) and are reported to develop PD-like symptoms at approximately 10 months of age. Despite similar expression of the transgene, our colony did not recapitulate the same type of motor dysfunction originally reported. However, tests of motor coordination (pole test, Rotor-Rod) revealed a significant defect in LRRK2(R1441G) mice by 16 months of age. LRRK2(R1441G) tg mice, or wild type littermates, were given diapocynin (200mg/kg, a proposed NADPH oxidase inhibitor) three times per week by oral gavage starting at 12 weeks of age. Decreased performance on the pole test and Rotor-Rod in the LRRK2(R1441G) mice was prevented with diapocynin treatment. No loss in open field movement or rearing was found. As expected, tyrosine hydroxylase staining was similar in both the substantia nigra and striatum in all treatment groups. Together these data demonstrate that diapocynin is a viable agent for protection of neurobehavioral function.


Assuntos
Acetofenonas/farmacologia , Compostos de Bifenilo/farmacologia , Marcha/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Doença de Parkinson/prevenção & controle , Proteínas Serina-Treonina Quinases/genética , Animais , Modelos Animais de Doenças , Marcha/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos , Camundongos Transgênicos , Atividade Motora/genética , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Teste de Desempenho do Rota-Rod
19.
Methods Enzymol ; 526: 145-57, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23791099

RESUMO

Developing rigorous assays for cellular detection of reactive oxygen and nitrogen species (O2(·-), H2O2, (·)NO, and ONOO(-)) is an active area of research in our laboratory. Published reports suggest that diagnostic marker products are formed as a result of interaction of these species with small molecular weight fluorescent and nonfluorescent probes. In this chapter, we describe an HPLC-based methodology to detect formation of these species in biological and cellular systems. By monitoring the diagnostic marker products formed from reaction between specific chemical probes and the oxidant species, it is possible to simultaneously assay these species using a multiwell plate (e.g., 384-well plate).


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Sondas Moleculares/química , Espécies Reativas de Nitrogênio/análise , Espécies Reativas de Oxigênio/análise , Animais , Ácidos Borônicos/química , Corantes Fluorescentes/química , Humanos , Compostos Organofosforados/química , Ácido Peroxinitroso/química
20.
Chem Res Toxicol ; 26(6): 856-67, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23611338

RESUMO

Aromatic boronic acids react rapidly with peroxynitrite (ONOO(-)) to yield phenols as major products. This reaction was used to monitor ONOO(-) formation in cellular systems. Previously, we proposed that the reaction between ONOO(-) and arylboronates (PhB(OH)2) yields a phenolic product (major pathway) and a radical pair PhB(OH)2O(•-)···(•)NO2 (minor pathway). [Sikora, A. et al. (2011) Chem. Res. Toxicol. 24, 687-697]. In this study, we investigated the influence of a bulky triphenylphosphonium (TPP) group on the reaction between ONOO(-) and mitochondria-targeted arylboronate isomers (o-, m-, and p-MitoPhB(OH)2). Results from the electron paramagnetic resonance (EPR) spin-trapping experiments unequivocally showed the presence of a phenyl radical intermediate from meta and para isomers, and not from the ortho isomer. The yield of o-MitoPhNO2 formed from the reaction between o-MitoPhB(OH)2 and ONOO(-) was not diminished by phenyl radical scavengers, suggesting a rapid fragmentation of the o-MitoPhB(OH)2O(•-) radical anion with subsequent reaction of the resulting phenyl radical with (•)NO2 in the solvent cage. The DFT quantum mechanical calculations showed that the energy barrier for the dissociation of the o-MitoPhB(OH)2O(•-) radical anion is significantly lower than that of m-MitoPhB(OH)2O(•-) and p-MitoPhB(OH)2O(•-) radical anions. The nitrated product, o-MitoPhNO2, is not formed by the nitrogen dioxide radical generated by myeloperoxidase in the presence of the nitrite anion and hydrogen peroxide, indicating that this specific nitrated product may be used as a diagnostic marker product for ONOO(-). Incubation of o-MitoPhB(OH)2 with RAW 264.7 macrophages activated to produce ONOO(-) yielded the corresponding phenol o-MitoPhOH as well as the diagnostic nitrated product, o-MitoPhNO2. We conclude that the ortho isomer probe reported here is most suitable for specific detection of ONOO(-) in biological systems.


Assuntos
Ácidos Borônicos/metabolismo , Macrófagos/metabolismo , Compostos Organofosforados/metabolismo , Ácido Peroxinitroso/análise , Ácido Peroxinitroso/metabolismo , Animais , Ácidos Borônicos/química , Células Cultivadas , Macrófagos/citologia , Camundongos , Sondas Moleculares/análise , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Estrutura Molecular , Compostos Organofosforados/síntese química , Compostos Organofosforados/química , Ácido Peroxinitroso/biossíntese , Ácido Peroxinitroso/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...