Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 183: 107624, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34077765

RESUMO

Hepatopancreatic microsporidiosis (HPM) is an infectious shrimp disease caused by the microsporidian Enterocytozoon hepatopenaei (EHP). In recent years, the widespread occurrence of EHP poses a significant challenge to the shrimp aquaculture industry. Early, rapid and accurate diagnosis of EHP infection is very much essential for the control of HPM crop-related losses. Loop-mediated isothermal amplification (LAMP) is a robust, sensitive, cost-effective disease diagnostic technique. Here, we demonstrate an improved, simple, closed-tube, colorimetric EHP LAMP diagnostic assay. LAMP assay was illustrated with the specific EHP spore wall protein (SWP) gene primers. Naked eye visual detection of LAMP amplicons was achieved using Hydroxy naphthol blue (HNB) or Phenol red dye without opening the tubes. This LAMP assay is efficient in detecting the EHP pathogen in all clinical samples include shrimp hepatopancreas, FTA card samples, feces, pond water, and soil. Also, the elution of EHP DNA from FTA cards was demonstrated within 17 min using a simple dry bath. In clinical evaluation, the visual LAMP assay established 100% diagnostic sensitivity and 100% diagnostic specificity. The visual LAMP assay is rapid, can detect the EHP pathogen within 40 min using a simple dry bath, and does not require any expensive instruments and technical proficiency. In conclusion, this visual LAMP protocol is a user-friendly, specific assay that can be conceivably operated at the farm-site/ resource-limited settings by the farmer himself with simple equipment.


Assuntos
Antígenos de Fungos/análise , Enterocytozoon/isolamento & purificação , Proteínas Fúngicas/análise , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Enterocytozoon/genética
2.
J Virol Methods ; 218: 7-13, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25779823

RESUMO

Water represents the most important component in the white spot syndrome virus (WSSV) transmission pathway in aquaculture, yet there is very little information. Detection of viruses in water is a challenge, since their counts will often be too low to be detected by available methods such as polymerase chain reaction (PCR). In order to overcome this difficulty, viruses in water have to be concentrated from large volumes of water prior to detection. In this study, a total of 19 water samples from aquaculture ecosystem comprising 3 creeks, 10 shrimp culture ponds, 3 shrimp broodstock tanks and 2 larval rearing tanks of shrimp hatcheries and a sample from a hatchery effluent treatment tank were subjected to concentration of viruses by ultrafiltration (UF) using tangential flow filtration (TFF). Twenty to 100l of water from these sources was concentrated to a final volume of 100mL (200-1000 fold). The efficiency of recovery of WSSV by TFF ranged from 7.5 to 89.61%. WSSV could be successfully detected by PCR in the viral concentrates obtained from water samples of three shrimp culture ponds, one each of the shrimp broodstock tank, larval rearing tank, and the shrimp hatchery effluent treatment tank with WSSV copy numbers ranging from 6 to 157mL(-1) by quantitative real time PCR. The ultrafiltration virus concentration technique enables efficient detection of shrimp viral pathogens in water from aquaculture facilities. It could be used as an important tool to understand the efficacy of biosecurity protocols adopted in the aquaculture facility and to carry out epidemiological investigations of aquatic viral pathogens.


Assuntos
DNA Viral/genética , Penaeidae/virologia , Ultrafiltração/métodos , Vírus da Síndrome da Mancha Branca 1/genética , Animais , Aquicultura , DNA Viral/análise , Reação em Cadeia da Polimerase , Lagoas/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...