Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 40(19): 9389-9402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34060427

RESUMO

Polymorphisms in the CYP2C19 have a huge impact on drug processing, out of which CYP2C19*2 and CYP2C19*3 are the most common variants associated with reduced metabolism of drugs. Mechanism by which two variants contribute in poor metabolization of drugs and cancer is not well understood. Here, we hypothesized that the mutations in CYP2C19 gene might affect the risk of chronic myeloid leukemia patients (CML). Present study has two main objectives: first to investigate the allele frequencies of CYP2C19*2 and CYP2C19*3 associated gene polymorphisms in CML patients and to elucidate the structural stability, conformation and functions of protein encoded by such variants. Genotyping of CYP2C19 was performed in 103 CML patients and 103 matched healthy controls. Heterozygous genotype of CYP2C19*2 was higher in CML patients (13.59%) than the controls (4.85%). Whereas, CYP2C19*3 allele frequency was not observed in cases as well as in controls. Furthermore, molecular dynamics (MD) simulation was applied to monitor the structural and conformational effect of above mutants. MD simulation results demonstrated that these mutants formed unstable proteins with distorted conformations, altered residues network and affected drug binding site which led to malfunction of mutant proteins. Hence, the study provides the role of CYP2C19 gene polymorphisms in susceptibility to CML population and explored the molecular basis of malignancies caused which may aid in the development of precise medicine or adjusting the drug dosages so as to reduce the chemotherapeutic side effects.Communicated by Ramaswamy H. Sarma.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Polimorfismo Genético , Humanos , Citocromo P-450 CYP2C19/genética , Frequência do Gene , Genótipo , Alelos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética
2.
Bioinformation ; 8(3): 123-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22368383

RESUMO

UNLABELLED: Flaviviruses are small, enveloped RNA viruses which cause a variety of diseases into animals and man. Despite the existence of licensed vaccines, yellow fever, Japanese encephalitis and tick-borne encephalitis also claim many thousands of victims each year across their vast endemic areas. A number of studies have already revealed that the non-structural NS3 serine protease is required for the maturation of the viral polyprotein and thus is a promising target for the development of antiviral inhibitors. Hence, the 3D structure of NS3 protein was modeled using homology modeling by MODELLER 9v7. Validation of the constructed NS3 protein models were done by PROCHECK, VERYFY3D and through ProSA calculations. Ligands for the catalytic triad (H51, D75, and S135) were designed using LIGBUILDER. The NS3 protein's catalytic triad was explored to find out the interactions pattern for inhibitor binding using molecular docking methodology using AUTODOCK Vina. The interactions of complex NS3protein-ligand conformations, including hydrogen bonds and the bond lengths were analyzed using Accelrys DS Visualizer software. Hence, from this observation, the novel molecule designed was observed to be the best ligand against the NS3 protein of flavivirus. This molecule may prove to be a potential identity in modulating disease manifestation for all the selected flavivirus members. ABBREVIATIONS: NCBI - National Centre for Biotechnological Information, BLAST - Basic Local Alignment Search Tool, DOPE - Discrete optimized protein energy, GROMOS96 - GROningen MOlecular Simulation package, SAVS - Structure Analysis and Validation Server.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...