Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 356: 124248, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38810674

RESUMO

Non-sewered sanitation systems (NSSS) are identified as significant contributors of greenhouse gases (GHGs), primarily due to biological processes occurring within the containment systems. In unsealed or unlined containment systems like pit latrines, the emissions are influenced by moisture. This work quantified the GHG emission from unlined or unsealed containments prevalent in Nepal and compared it with sealed containment-like septic tanks, where the chances of groundwater (GW) inundation are low. The modeled GW data extracted from the secondary sources were validated with available national data. The emissions were quantified using the Intergovernmental Panel for Climate Change (IPCC) model for different ecological and provincial divisions of Nepal. Spatial representation for the results was done using the Geographical Information System (GIS) tool. The total methane (CH4) emission occurring from the various NSSS was determined to be 2618 Gg CO2 e per year which is almost twice the emission from the waste sector in 2011, as reported by the recent national communication submitted to the United Nations Framework Convention on Climate Change (UNFCC). Variation of the CH4 emission was found to be prominent in lowlands (Terai region) with total national emissions of 1329.37 Gg CO2e per year. The lowland has a shallow GW table that can easily inundate the unlined containments like pit latrines thus contributing to more anaerobic conditions which may lead to higher CH4 emissions compared to containments in mid and highlands. This study concludes that the GHG emissions occurring from NSSS are substantial and addressing these emissions can help fulfil the Nationally Determined Contributions (NDCs) in the waste sector.

2.
Heliyon ; 9(5): e15800, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37215930

RESUMO

The rising unpredictability in the food supply chain in many parts of the world is related to soil loss and poor agricultural output. The Revised Universal Soil Loss Equation (RUSLE), widely used for estimating soil loss, was applied in the western mid-hills in Nepal, with steep slopes and fragile geology. This region is at high risk for rapid soil erosion and mass wasting. To estimate soil loss, this study utilized the RUSLE model with experimental erosion plots in the Aadhikhola and Tinahukhola watersheds, capturing real-time erosion in the field. The annual soil loss for the Aadhikhola watershed is estimated at ∼41.4 tons ha-1 yr-1. In contrast, in the Tinahukhola watershed, soil loss is low (∼24.1 tons ha-1 yr-1). Although annual rainfall showed an increasing trend in both watersheds, the change in soil loss was statistically insignificant. The high erosion rates from the experimental plots in both watersheds support the model outputs. Results from the experimental plots recorded the rate of soil erosion for different land use as: irrigated agricultural land > rainfed agricultural land > forests. The trends highlight the role of human activities in enhancing soil erosion in these mountainous terrains in terms of medium to long-term perspectives. Therefore, sustainable agriculture practices in these terrains must investigate alternate ways to decrease soil erosion to support people's livelihoods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...