Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 599(24): 5397-5416, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34783032

RESUMO

DFNA25 is an autosomal-dominant and progressive form of human deafness caused by mutations in the SLC17A8 gene, which encodes the vesicular glutamate transporter type 3 (VGLUT3). To resolve the mechanisms underlying DFNA25, we studied phenotypes of mice harbouring the p.A221V mutation in humans (corresponding to p.A224V in mice). Using auditory brainstem response and distortion product otoacoustic emissions, we showed progressive hearing loss with intact cochlear amplification in the VGLUT3A224V/A224V mouse. The summating potential was reduced, indicating the alteration of inner hair cell (IHC) receptor potential. Scanning electron microscopy examinations demonstrated the collapse of stereocilia bundles in IHCs, leaving those from outer hair cells unaffected. In addition, IHC ribbon synapses underwent structural and functional modifications at later stages. Using super-resolution microscopy, we observed oversized synaptic ribbons and patch-clamp membrane capacitance measurements showed an increase in the rate of the sustained releasable pool exocytosis. These results suggest that DFNA25 stems from a failure in the mechano-transduction followed by a change in synaptic transfer. The VGLUT3A224V/A224V mouse model opens the way to a deeper understanding and to a potential treatment for DFNA25. KEY POINTS: The vesicular glutamate transporter type 3 (VGLUT3) loads glutamate into the synaptic vesicles of auditory sensory cells, the inner hair cells (IHCs). The VGLUT3-p.A211V variant is associated with human deafness DFNA25. Mutant mice carrying the VGLUT3-p.A211V variant show progressive hearing loss. IHCs from mutant mice harbour distorted stereocilary bundles, which detect incoming sound stimulation, followed by oversized synaptic ribbons, which release glutamate onto the afferent nerve fibres. These results suggest that DFNA25 stems from the failure of auditory sensory cells to faithfully transduce acoustic cues into neural messages.


Assuntos
Estereocílios , Sinapses , Animais , Cóclea , Células Ciliadas Auditivas Internas , Células Ciliadas Auditivas Externas , Camundongos
2.
Sci Signal ; 11(529)2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739881

RESUMO

Tropomyosin-related tyrosine kinase B (TrkB) is the receptor for brain-derived neurotrophic factor (BDNF) and provides critical signaling that supports the development and function of the mammalian nervous system. Like other receptor tyrosine kinases (RTKs), TrkB is thought to signal as a dimer. Using cell imaging and biochemical assays, we found that TrkB acted as a monomeric receptor at the plasma membrane regardless of its binding to BDNF and initial activation. Dimerization occurred only after the internalization and accumulation of TrkB monomers within BDNF-containing endosomes. We further showed that dynamin-mediated endocytosis of TrkB-BDNF was required for the effective activation of the kinase AKT but not of the kinase ERK1/2. Thus, we report a previously uncharacterized mode of monomeric signaling for an RTK and a specific role for the endosome in TrkB homodimerization.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Membrana Celular/metabolismo , Dinaminas/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Multimerização Proteica , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Animais , Endocitose , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Sci Rep ; 8(1): 59, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311649

RESUMO

microRNAs (miRNAs) are critical for neuronal function and their dysregulation is repeatedly observed in neurodegenerative diseases. Here, we implemented high content image analysis for investigating the impact of several miRNAs in mouse primary motor neurons. This survey directed our attention to the neuron-specific miR-124, which controls axonal morphology. By performing next generation sequencing analysis and molecular studies, we characterized novel roles for miR-124 in control of mitochondria localization and function. We further demonstrated that the intermediate filament Vimentin is a key target of miR-124 in this system. Our data establishes a new pathway for control of mitochondria function in motor neurons, revealing the value of a neuron-specific miRNA gene as a mechanism for the re-shaping of otherwise ubiquitously-expressed intermediate filament network, upstream of mitochondria activity and cellular metabolism.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios Motores/metabolismo , Interferência de RNA , Vimentina/genética , Animais , Axônios , Células Cultivadas , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Camundongos , Imagem Molecular , Transcriptoma , Vimentina/metabolismo
4.
PLoS Genet ; 12(12): e1006486, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27997532

RESUMO

Familial Dysautonomia (FD) is a neurodegenerative disease in which aberrant tissue-specific splicing of IKBKAP exon 20 leads to reduction of IKAP protein levels in neuronal tissues. Here we generated a conditional knockout (CKO) mouse in which exon 20 of IKBKAP is deleted in the nervous system. The CKO FD mice exhibit developmental delays, sensory abnormalities, and less organized dorsal root ganglia (DRGs) with attenuated axons compared to wild-type mice. Furthermore, the CKO FD DRGs show elevated HDAC6 levels, reduced acetylated α-tubulin, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor (NGF). These abnormalities in DRG properties underlie neuronal degeneration and FD symptoms. Phosphatidylserine treatment decreased HDAC6 levels and thus increased acetylation of α-tubulin. Further PS treatment resulted in recovery of axonal outgrowth and enhanced retrograde axonal transport by decreasing histone deacetylase 6 (HDAC6) levels and thus increasing acetylation of α-tubulin levels. Thus, we have identified the molecular pathway that leads to neurodegeneration in FD and have demonstrated that phosphatidylserine treatment has the potential to slow progression of neurodegeneration.


Assuntos
Transporte Axonal/efeitos dos fármacos , Disautonomia Familiar/genética , Histona Desacetilases/genética , Fosfatidilserinas/administração & dosagem , Tubulina (Proteína)/genética , Processamento Alternativo/genética , Animais , Transporte Axonal/genética , Axônios/efeitos dos fármacos , Modelos Animais de Doenças , Disautonomia Familiar/tratamento farmacológico , Disautonomia Familiar/patologia , Éxons/genética , Gânglios Espinais/crescimento & desenvolvimento , Gânglios Espinais/patologia , Desacetilase 6 de Histona , Histona Desacetilases/biossíntese , Humanos , Camundongos , Camundongos Knockout , Degeneração Neural/tratamento farmacológico , Degeneração Neural/genética , Degeneração Neural/patologia , Fator de Crescimento Neural/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fosfatidilserinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...