Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Graph Model ; 107: 107978, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34217024

RESUMO

Fosfomycin resistance protein (FosA) is a metalloenzyme known for catalyzing a nucleophilic addition reaction of glutathione to the epoxide ring of Fosfomycin, a broad-spectrum antibiotic used to combat Gram-positive pathogens. The reaction leads fosfomycin to lose its pharmacological effect, thus promotes antibiotic resistance. A small-molecule FosA inhibitor has been discovered. ANY1 (3-bromo-6-[3-(3-bromo-2-oxo-1H-pyrazolo[1,5-a]pyrimidin-6-yl)-4-nitro-1H-pyrazol-5-yl]-1H-pyrazolo[1,5-a]pyrimidin-2-one) is competitive with the antibiotic for binding the active site of the enzyme. Through Molecular Mechanics methods, using the AMBER force field, we carry out molecular dynamics simulations and binding free energy calculations to investigate the most important interactions between the enzyme and inhibitor. Our results were able to reproduce the trend of experimental data with R2 of 77.51%. Furthermore, we have shown that electrostatic and van der Waals interactions, as well as cavitation energies, are favorable for maintaining the enzyme-inhibitor complex, while reactive field energies and non-polar interactions act in an unfavorable way for interactions between FosA and ANY1.


Assuntos
Farmacorresistência Bacteriana , Fosfomicina , Antibacterianos/farmacologia , Proteínas de Bactérias , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...