Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 34(7)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36179653

RESUMO

Glioblastoma (GBM), the deadliest brain cancer, presents a multitude of challenges to the development of new therapies. The standard of care has only changed marginally in the past 17 years, and few new chemotherapies have emerged to supplant or effectively combine with temozolomide. Concurrently, new technologies and techniques are being investigated to overcome the pharmacokinetic challenges associated with brain delivery, such as the blood brain barrier (BBB), tissue penetration, diffusion, and clearance in order to allow for potent agents to successful engage in tumor killing. Alternative delivery modalities such as focused ultrasound and convection enhanced delivery allow for the local disruption of the BBB, and the latter in particular has shown promise in achieving broad distribution of agents in the brain. Furthermore, the development of polymeric nanocarriers to encapsulate a variety of cargo, including small molecules, proteins, and nucleic acids, have allowed for formulations that protect and control the release of said cargo to extend its half-life. The combination of local delivery and nanocarriers presents an exciting opportunity to address the limitations of current chemotherapies for GBM toward the goal of improving safety and efficacy of treatment. However, much work remains to establish standard criteria for selection and implementation of these modalities before they can be widely implemented in the clinic. Ultimately, engineering principles and nanotechnology have opened the door to a new wave of research that may soon advance the stagnant state of GBM treatment development.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Humanos , Polímeros , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/patologia , Glioblastoma/metabolismo
2.
J Thorac Cardiovasc Surg ; 156(5): 1814-1822.e3, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30057192

RESUMO

OBJECTIVE: Tissue-engineered vascular grafts containing adipose-derived mesenchymal stem cells offer an alternative to small-diameter vascular grafts currently used in cardiac and lower-extremity revascularization procedures. Adipose-derived, mesenchymal stem cell-infused, tissue-engineered vascular grafts have been shown to promote remodeling and vascular homeostasis in vivo and offer a possible treatment solution for those with cardiovascular disease. Unfortunately, the time needed to cultivate adipose-derived mesenchymal stem cells remains a large hurdle for tissue-engineered vascular grafts as a treatment option. The purpose of this study was to determine if stromal vascular fraction (known to contain progenitor cells) seeded tissue-engineered vascular grafts would remain patent in vivo and remodel, allowing for a "same-day" process for tissue-engineered vascular graft fabrication and implantation. METHODS: Stromal vascular fraction, obtained from adult human adipose tissue, was seeded within 4 hours after acquisition from the patient onto poly(ester urethane)urea bilayered scaffolds using a customized rotational vacuum seeding device. Constructs were then surgically implanted as abdominal aortic interposition grafts in Lewis rats. RESULTS: Findings revealed patency in 5 of 7 implanted scaffolds at 8 weeks, along with neotissue formation and remodeling occurring in patent tissue-engineered vascular grafts. Patency was documented using angiography and gross inspection, and remodeling and vascular components were detected using immunofluorescent chemistry. CONCLUSIONS: A "same-day" cell-seeded, tissue-engineered vascular graft can remain patent after implantation in vivo, with neotissue formation and remodeling occurring by 8 weeks.


Assuntos
Tecido Adiposo/citologia , Aorta Abdominal/cirurgia , Bioprótese , Implante de Prótese Vascular/instrumentação , Prótese Vascular , Transplante de Células-Tronco/instrumentação , Células Estromais/fisiologia , Células Estromais/transplante , Engenharia Tecidual/métodos , Alicerces Teciduais , Adulto , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aorta Abdominal/fisiopatologia , Biomarcadores/metabolismo , Células Cultivadas , Estudos de Viabilidade , Feminino , Humanos , Pessoa de Meia-Idade , Neointima , Fenótipo , Desenho de Prótese , Ratos Endogâmicos Lew , Células Estromais/metabolismo , Fatores de Tempo , Transplante Heterólogo , Grau de Desobstrução Vascular , Remodelação Vascular , Fluxo de Trabalho
3.
Biomaterials ; 178: 193-203, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29936153

RESUMO

Intracranial delivery of therapeutic agents is limited by penetration beyond the blood-brain barrier (BBB) and rapid metabolism of the drugs that are delivered. Convection-enhanced delivery (CED) of drug-loaded nanoparticles (NPs) provides for local administration, control of distribution, and sustained drug release. While some investigators have shown that repeated CED procedures are possible, longer periods of sustained release could eliminate the need for repeated infusions, which would enhance safety and translatability of the approach. Here, we demonstrate that nanoparticles formed from poly(ethylene glycol)-poly(ω-pentadecalactone-co-p-dioxanone) block copolymers [PEG-poly(PDL-co-DO)] are highly efficient nanocarriers that provide long-term release: small nanoparticles (less than 100 nm in diameter) continuously released a radiosensitizer (VE822) over a period of several weeks in vitro, provided widespread intracranial drug distribution during CED, and yielded significant drug retention within the brain for over 1 week. One advantage of PEG-poly(PDL-co-DO) nanoparticles is that hydrophobicity can be tuned by adjusting the ratio of hydrophobic PDL to hydrophilic DO monomers, thus making it possible to achieve a wide range of drug release rates and drug distribution profiles. When administered by CED to rats with intracranial RG2 tumors, and combined with a 5-day course of fractionated radiation therapy, VE822-loaded PEG-poly(PDL-co-DO) NPs significantly prolonged survival when compared to free VE822. Thus, PEG-poly(PDL-co-DO) NPs represent a new type of versatile nanocarrier system with potential for sustained intracranial delivery of therapeutic agents to treat brain tumors.


Assuntos
Materiais Biocompatíveis/química , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Animais , Neoplasias Encefálicas/patologia , Convecção , Liberação Controlada de Fármacos , Hidrodinâmica , Isoxazóis/farmacologia , Masculino , Nanopartículas/ultraestrutura , Poliésteres/síntese química , Polietilenoglicóis/síntese química , Pirazinas/farmacologia , Radiossensibilizantes/farmacologia , Ratos Endogâmicos F344 , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Tissue Eng Part A ; 22(9-10): 765-75, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27079751

RESUMO

Many preclinical evaluations of autologous small-diameter tissue-engineered vascular grafts (TEVGs) utilize cells from healthy humans or animals. However, these models hold minimal relevance for clinical translation, as the main targeted demographic is patients at high cardiovascular risk such as individuals with diabetes mellitus or the elderly. Stem cells such as adipose-derived mesenchymal stem cells (AD-MSCs) represent a clinically ideal cell type for TEVGs, as these can be easily and plentifully harvested and offer regenerative potential. To understand whether AD-MSCs sourced from diabetic and elderly donors are as effective as those from young nondiabetics (i.e., healthy) in the context of TEVG therapy, we implanted TEVGs constructed with human AD-MSCs from each donor type as an aortic interposition graft in a rat model. The key failure mechanism observed was thrombosis, and this was most prevalent in grafts using cells from diabetic patients. The remainder of the TEVGs was able to generate robust vascular-like tissue consisting of smooth muscle cells, endothelial cells, collagen, and elastin. We further investigated a potential mechanism for the thrombotic failure of AD-MSCs from diabetic donors; we found that these cells have a diminished potential to promote fibrinolysis compared to those from healthy donors. Together, this study served as proof of concept for the development of a TEVG based on human AD-MSCs, illustrated the importance of testing cells from realistic patient populations, and highlighted one possible mechanistic explanation as to the observed thrombotic failure of our diabetic AD-MSC-based TEVGs.


Assuntos
Tecido Adiposo/metabolismo , Bioprótese , Prótese Vascular , Doenças Cardiovasculares , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual , Adulto , Idoso , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/terapia , Feminino , Humanos , Pessoa de Meia-Idade , Ratos , Ratos Endogâmicos Lew , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...