Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(46): eadd0676, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37967194

RESUMO

During embryogenesis, multiple intricate and intertwined cellular signaling pathways coordinate cell behavior. Their slightest alterations can have dramatic consequences for the cells and the organs they form. The transcriptional repressor Bcl6 was recently found as important for brain development. However, its regulation and integration with other signals is unknown. Using in vivo functional approaches combined with molecular mechanistic analysis, we identified a reciprocal regulatory loop between B cell lymphoma 6 (Bcl6) and the RhoA-regulated transcriptional complex megakaryoblastic leukemia/serum response factor (MKL/SRF). We show that Bcl6 physically interacts with MKL/SRF, resulting in a down-regulation of the transcriptional activity of both Bcl6 and MKL/SRF. This molecular cross-talk is essential for the control of proliferation, neurogenesis, and spatial positioning of neural progenitors. Overall, our data highlight a regulatory mechanism that controls neuronal production and neocortical development and reveal an MKL/SRF and Bcl6 interaction that may have broader implications in other physiological functions and in diseases.


Assuntos
Neocórtex , Fator de Resposta Sérica , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Neocórtex/metabolismo , Fatores de Transcrição/metabolismo , Expressão Gênica , Células-Tronco/metabolismo
2.
Elife ; 102021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33899739

RESUMO

Diaphanous (DIAPH) three (DIAPH3) is a member of the formin proteins that have the capacity to nucleate and elongate actin filaments and, therefore, to remodel the cytoskeleton. DIAPH3 is essential for cytokinesis as its dysfunction impairs the contractile ring and produces multinucleated cells. Here, we report that DIAPH3 localizes at the centrosome during mitosis and regulates the assembly and bipolarity of the mitotic spindle. DIAPH3-deficient cells display disorganized cytoskeleton and multipolar spindles. DIAPH3 deficiency disrupts the expression and/or stability of several proteins including the kinetochore-associated protein SPAG5. DIAPH3 and SPAG5 have similar expression patterns in the developing brain and overlapping subcellular localization during mitosis. Knockdown of SPAG5 phenocopies DIAPH3 deficiency, whereas its overexpression rescues the DIAHP3 knockdown phenotype. Conditional inactivation of Diaph3 in mouse cerebral cortex profoundly disrupts neurogenesis, depleting cortical progenitors and neurons, leading to cortical malformation and autistic-like behavior. Our data uncover the uncharacterized functions of DIAPH3 and provide evidence that this protein belongs to a molecular toolbox that links microtubule dynamics during mitosis to aneuploidy, cell death, fate determination defects, and cortical malformation.


Assuntos
Comportamento Animal , Córtex Cerebral/metabolismo , Forminas/deficiência , Microtúbulos/metabolismo , Mitose , Neurogênese , Neurônios/metabolismo , Fuso Acromático/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Comportamento Alimentar , Forminas/genética , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Humanos , Locomoção , Aprendizagem em Labirinto , Camundongos , Camundongos Knockout , Microtúbulos/genética , Microtúbulos/patologia , Células NIH 3T3 , Neurônios/patologia , Fenótipo , Comportamento Social , Fuso Acromático/genética , Fuso Acromático/patologia
3.
Biomolecules ; 10(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604886

RESUMO

During embryonic development and adulthood, Reelin exerts several important functions in the brain including the regulation of neuronal migration, dendritic growth and branching, dendritic spine formation, synaptogenesis and synaptic plasticity. As a consequence, the Reelin signaling pathway has been associated with several human brain disorders such as lissencephaly, autism, schizophrenia, bipolar disorder, depression, mental retardation, Alzheimer's disease and epilepsy. Several elements of the signaling pathway are known. Core components, such as the Reelin receptors very low-density lipoprotein receptor (VLDLR) and Apolipoprotein E receptor 2 (ApoER2), Src family kinases Src and Fyn, and the intracellular adaptor Disabled-1 (Dab1), are common to most but not all Reelin functions. Other downstream effectors are, on the other hand, more specific to defined tasks. Reelin is a large extracellular protein, and some aspects of the signal are regulated by its processing into smaller fragments. Rather than being inhibitory, the processing at two major sites seems to be fulfilling important physiological functions. In this review, I describe the various cellular events regulated by Reelin and attempt to explain the current knowledge on the mechanisms of action. After discussing the shared and distinct elements of the Reelin signaling pathway involved in neuronal migration, dendritic growth, spine development and synaptic plasticity, I briefly outline the data revealing the importance of Reelin in human brain disorders.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais , Animais , Humanos , Proteína Reelina
4.
Mol Cell Neurosci ; 106: 103503, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32485296

RESUMO

Cell polarity is defined as the asymmetric distribution of cellular components along an axis. Most cells, from the simplest single-cell organisms to highly specialized mammalian cells, are polarized and use similar mechanisms to generate and maintain polarity. Cell polarity is important for cells to migrate, form tissues, and coordinate activities. During development of the mammalian cerebral cortex, cell polarity is essential for neurogenesis and for the migration of newborn but as-yet undifferentiated neurons. These oriented migrations include both the radial migration of excitatory projection neurons and the tangential migration of inhibitory interneurons. In this review, I will first describe the development of the cerebral cortex, as revealed at the cellular level. I will then define the core molecular mechanisms - the Par/Crb/Scrib polarity complexes, small GTPases, the actin and microtubule cytoskeletons, and phosphoinositides/PI3K signaling - that are required for asymmetric cell division, apico-basal and front-rear polarity in model systems, including C elegans zygote, Drosophila embryos and cultured mammalian cells. As I go through each core mechanism I will explain what is known about its importance in radial and tangential migration in the developing mammalian cerebral cortex.


Assuntos
Encéfalo/citologia , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Neurônios/citologia , Animais , Encéfalo/metabolismo , Humanos , Neurogênese/fisiologia , Neurônios/metabolismo , Transdução de Sinais/fisiologia
5.
Mol Cell Biol ; 40(14)2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32341084

RESUMO

Several events during the normal development of the mammalian neocortex depend on N-cadherin, including the radial migration of immature projection neurons into the cortical plate. Remarkably, radial migration requires the N-cadherin extracellular domain but not N-cadherin-dependent homophilic cell-cell adhesion, suggesting that other N-cadherin-binding proteins may be involved. We used proximity ligation and affinity purification proteomics to identify N-cadherin-binding proteins. Both screens detected MycBP2 and SPRY domain protein Fbxo45, two components of an intracellular E3 ubiquitin ligase. Fbxo45 appears to be secreted by a nonclassical mechanism, not involving a signal peptide and not requiring transport from the endoplasmic reticulum to the Golgi apparatus. Fbxo45 binding requires N-cadherin SPRY motifs that are not involved in cell-cell adhesion. SPRY mutant N-cadherin does not support radial migration in vivo Radial migration was similarly inhibited when Fbxo45 expression was suppressed. The results suggest that projection neuron migration requires both Fbxo45 and the binding of Fbxo45 or another protein to SPRY motifs in the extracellular domain of N-cadherin.


Assuntos
Encéfalo/embriologia , Caderinas/metabolismo , Proteínas F-Box/metabolismo , Neurônios/citologia , Animais , Domínio B30.2-SPRY , Encéfalo/citologia , Encéfalo/metabolismo , Caderinas/análise , Movimento Celular , Proteínas F-Box/análise , Feminino , Células HEK293 , Células HeLa , Humanos , Camundongos , Neurônios/metabolismo , Ligação Proteica
6.
Elife ; 82019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31577229

RESUMO

The functions of FGF receptors (FGFRs) in early development of the cerebral cortex are well established. Their functions in the migration of neocortical projection neurons, however, are unclear. We have found that FGFRs regulate multipolar neuron orientation and the morphological change into bipolar cells necessary to enter the cortical plate. Mechanistically, our results suggest that FGFRs are activated by N-Cadherin. N-Cadherin cell-autonomously binds FGFRs and inhibits FGFR K27- and K29-linked polyubiquitination and lysosomal degradation. Accordingly, FGFRs accumulate and stimulate prolonged Erk1/2 phosphorylation. Neurons inhibited for Erk1/2 are stalled in the multipolar zone. Moreover, Reelin, a secreted protein regulating neuronal positioning, prevents FGFR degradation through N-Cadherin, causing Erk1/2 phosphorylation. These findings reveal novel functions for FGFRs in cortical projection neuron migration, suggest a physiological role for FGFR and N-Cadherin interaction in vivo and identify Reelin as an extracellular upstream regulator and Erk1/2 as downstream effectors of FGFRs during neuron migration.


Assuntos
Caderinas/metabolismo , Neocórtex/embriologia , Neurogênese , Neurônios/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Ubiquitinação , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Proteína Reelina , Serina Endopeptidases/metabolismo
7.
Front Cell Neurosci ; 11: 163, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28670267

RESUMO

The cerebral cortex is composed of billions of neurons that can grossly be subdivided into two broad classes: inhibitory GABAergic interneurons and excitatory glutamatergic neurons. The majority of cortical neurons in mammals are the excitatory type and they are the main focus of this review article. Like many of the cells in multicellular organisms, fully differentiated neurons are both morphologically and functionally polarized. However, they go through several changes in polarity before reaching this final mature differentiated state. Neurons are derived from polarized neuronal progenitor/stem cells and their commitment to neuronal fate is decided by cellular and molecular asymmetry during their last division in the neurogenic zone. They migrate from their birthplace using so-called multipolar migration, during which they switch direction of movement several times, and repolarize for bipolar migration when the axon is specified. Therefore, neurons have to break their previous symmetry, change their morphology and adequately respond to polarizing signals during migration in order to reach the correct position in the cortex and start making connections. Finally, the dendritic tree is elaborated and the axon/dendrite morphological polarity is set. Here we will describe the function, establishment and maintenance of polarity during the different developmental steps starting from neural stem cell (NSC) division, neuronal migration and axon specification at embryonic developmental stages.

8.
Dev Cell ; 41(5): 481-495.e5, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28552558

RESUMO

Malformations of the cerebral cortex (MCCs) are devastating developmental disorders. We report here that mice with embryonic neural stem-cell-specific deletion of Llgl1 (Nestin-Cre/Llgl1fl/fl), a mammalian ortholog of the Drosophila cell polarity gene lgl, exhibit MCCs resembling severe periventricular heterotopia (PH). Immunohistochemical analyses and live cortical imaging of PH formation revealed that disruption of apical junctional complexes (AJCs) was responsible for PH in Nestin-Cre/Llgl1fl/fl brains. While it is well known that cell polarity proteins govern the formation of AJCs, the exact mechanisms remain unclear. We show that LLGL1 directly binds to and promotes internalization of N-cadherin, and N-cadherin/LLGL1 interaction is inhibited by atypical protein kinase C-mediated phosphorylation of LLGL1, restricting the accumulation of AJCs to the basolateral-apical boundary. Disruption of the N-cadherin-LLGL1 interaction during cortical development in vivo is sufficient for PH. These findings reveal a mechanism responsible for the physical and functional connection between cell polarity and cell-cell adhesion machineries in mammalian cells.


Assuntos
Encéfalo/anormalidades , Adesão Celular/fisiologia , Polaridade Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Proteínas de Homeodomínio/fisiologia , Células-Tronco Neurais/fisiologia , Heterotopia Nodular Periventricular/patologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Apoptose , Encéfalo/metabolismo , Encéfalo/patologia , Caderinas/genética , Caderinas/metabolismo , Proliferação de Células , Células Cultivadas , Proteínas do Citoesqueleto , Células-Tronco Embrionárias/citologia , Feminino , Camundongos , Camundongos Transgênicos , Nestina/genética , Nestina/metabolismo , Células-Tronco Neurais/citologia , Heterotopia Nodular Periventricular/metabolismo , Fosforilação
9.
Nat Commun ; 7: 10936, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26939553

RESUMO

Sequential generation of neurons and glial cells during development is critical for the wiring and function of the cerebral cortex. This process requires accurate coordination of neural progenitor cell (NPC) fate decisions, by NPC-autonomous mechanisms as well as by negative feedback from neurons. Here, we show that neurogenesis is protracted and gliogenesis decreased in mice with mutations of genes Celsr3 and Fzd3. This phenotype is not due to gene inactivation in progenitors, but rather in immature cortical neurons. Mutant neurons are unable to upregulate expression of Jag1 in response to cortical Wnt7, resulting in blunted activation of Notch signalling in NPC. Thus, Celsr3 and Fzd3 enable immature neurons to respond to Wnt7, upregulate Jag1 and thereby facilitate feedback signals that tune the timing of NPC fate decisions via Notch activation.


Assuntos
Caderinas/metabolismo , Receptores Frizzled/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , Animais , Bromodesoxiuridina , Caderinas/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Feminino , Receptores Frizzled/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1 , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mutação , Neurogênese/fisiologia , Gravidez , Proteínas Proto-Oncogênicas/genética , Receptores de Superfície Celular/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Serrate-Jagged , Coloração e Rotulagem , Proteínas Wnt/genética
10.
Neuron ; 79(6): 1123-35, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24050402

RESUMO

Neurons of the cerebral cortex are organized in layers and columns. Unlike laminar patterning, the mechanisms underlying columnar organization remain largely unexplored. Here, we show that ephrin-B1 plays a key role in this process through the control of nonradial steps of migration of pyramidal neurons. In vivo gain of function of ephrin-B1 resulted in a reduction of tangential motility of pyramidal neurons, leading to abnormal neuronal clustering. Conversely, following genetic disruption of ephrin-B1, cortical neurons displayed a wider lateral dispersion, resulting in enlarged ontogenic columns. Dynamic analyses revealed that ephrin-B1 controls the lateral spread of pyramidal neurons by limiting neurite extension and tangential migration during the multipolar phase. Furthermore, we identified P-Rex1, a guanine-exchange factor for Rac3, as a downstream ephrin-B1 effector required to control migration during the multipolar phase. Our results demonstrate that ephrin-B1 inhibits nonradial migration of pyramidal neurons, thereby controlling the pattern of cortical columns.


Assuntos
Movimento Celular/genética , Córtex Cerebral/citologia , Efrina-B1/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Piramidais/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Proteínas de Transporte/metabolismo , Adesão Celular/genética , Proteínas de Ciclo Celular/metabolismo , Eletroporação , Embrião de Mamíferos , Efrina-B1/deficiência , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Imunoprecipitação , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso , Proteínas Nucleares/metabolismo , Gravidez , Proteínas Repressoras/metabolismo
11.
Nat Neurosci ; 14(6): 697-703, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21516100

RESUMO

Projection neurons migrate from the ventricular zone to the neocortical plate during the development of the mouse brain. Their overall movement is radial, but they become multipolar and move nonradially in the intermediate zone. Here we show that Reelin, the Rap1 GTPase and N-cadherin (NCad) are important for multipolar neurons to polarize their migration toward the cortical plate. Inhibition and rescue experiments indicated that Reelin regulates migration through Rap1 and Akt, and that the Rap1-regulated GTPases RalA, RalB, Rac1 and Cdc42 are also involved. We found that Rap1 regulated the plasma membrane localization of NCad and NCad rescued radial polarization when Rap1 was inhibited. However, inhibition of Rap1 or NCad had little effect on glia-dependent locomotion. We propose a multistep mechanism in which Reelin activates Rap1, Rap1 upregulates NCad, and NCad is needed to orient cell migration.


Assuntos
Caderinas/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Neocórtex/citologia , Neocórtex/embriologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Serina Endopeptidases/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Camundongos , Camundongos Endogâmicos , Neurônios/fisiologia , Proteína Reelina
12.
Small GTPases ; 2(6): 322-328, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22545231

RESUMO

Neuronal migration is essential for the development of the cerebral cortex. Mutations leading to defective migration are associated with numerous brain pathologies. An important challenge in the field is to understand the intrinsic and extrinsic mechanisms that regulate neuronal migration during normal development and in disease. Many small GTPases are expressed in the central nervous system during embryonic development. Recent findings have shown that Rap1 and its downstream partners Ral, Rac and Cdc42 are involved in the maintenance of N-Cadherin at the plasma membrane which is necessary for the correct polarization of migrating neurons. The activation of Rap1 is triggered by Reelin, an extracellular protein known for its role in the organization of the cortex into layers of neurons. In the absence of Reelin, neurons exhibit a broader and irregular pattern of positioning. The prevailing model suggests that Reelin signals to neurons during the last step of their migration, a notion that is inconsistent with new data describing an effect of Reelin on early steps of migration. In regard to these recent findings I suggest a revised model, which I call the "polarity model," that further refines our understanding of the developmental function played by Reelin and its downstream small GTPases.

13.
J Neurosci ; 30(16): 5668-76, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20410119

RESUMO

The multilayered mammalian neocortex develops by the coordinated immigration and differentiation of cells that are produced at distant sites. Correct layering requires an extracellular protein, Reelin (Reln), an intracellular signaling molecule, Disabled-1 (Dab1), and an E3 ubiquitin ligase, Cullin-5 (Cul5). Reln activates Dab1, which is then degraded by Cul5. Here we test whether Cul5 regulates neuron layering by affecting Dab1 stability or other mechanisms. We find that a stabilized mutant Dab1, which resists Cul5-dependent degradation, causes a similar phenotype to Cul5 deficiency. Moreover, Cul5 has no effect when Dab1 is absent. The effects of Cul5 and Dab1 are cell autonomous, and Cul5 regulates movement of early as well as late cortical neurons. Removing Cul5 increases the speed at which neurons migrate through the cortical plate by reducing the time spent stationary and increasing the speed of individual steps. These results show that Cul5 regulates neuron layering by stimulating Dab1 degradation and that Cul5 controls migration speed and stopping point, and they demonstrate the importance of negative feedback in signaling during cortical development.


Assuntos
Movimento Celular/fisiologia , Córtex Cerebral/fisiologia , Proteínas Culina/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Animais , Linhagem Celular , Movimento Celular/genética , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Feminino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , Neurônios/citologia , Gravidez , Proteína Reelina , Fatores de Tempo
14.
Mol Cell Biol ; 27(20): 7113-24, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17698586

RESUMO

Reelin is an extracellular matrix protein with various functions during development and in the mature brain. It activates different signaling cascades in target cells, one of which is the phosphatidylinositol 3-kinase (PI3K) pathway, which we investigated further using pathway inhibitors and in vitro brain slice and neuronal cultures. We show that the mTor (mammalian target of rapamycin)-S6K1 (S6 kinase 1) pathway is activated by Reelin and that this depends on Dab1 (Disabled-1) phosphorylation and activation of PI3K and Akt (protein kinase B). PI3K and Akt are required for the effects of Reelin on the organization of the cortical plate, but their downstream partners mTor and glycogen synthase kinase 3beta (GSK3beta) are not. On the other hand, mTor, but not GSK3beta, mediates the effects of Reelin on the growth and branching of dendrites of hippocampal neurons. In addition, PI3K fosters radial migration of cortical neurons through the intermediate zone, an effect that is independent of Reelin and Akt.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Dendritos/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina Endopeptidases/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/genética , Movimento Celular/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Dendritos/ultraestrutura , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , Proteínas da Matriz Extracelular/genética , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Camundongos , Camundongos Mutantes Neurológicos , Proteínas do Tecido Nervoso/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteína Reelina , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina Endopeptidases/genética , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR
15.
Proc Natl Acad Sci U S A ; 104(20): 8508-13, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17494763

RESUMO

Postnatal migration of interneuron precursors from the subventricular zone to the olfactory bulb occurs in chains that form the substrate for the rostral migratory stream. Reelin is suggested to induce detachment of neuroblasts from the chains when they arrive at the olfactory bulb. Here we show that ApoER2 and possibly very-low-density lipoprotein receptor (VLDLR) and their intracellular adapter protein Dab1 are involved in chain formation most likely independent of Reelin. F-spondin, which is present in the stream, may act as ligand for ApoER2 and VLDLR. In mice lacking either both receptors or Dab1 chain formation is severely compromised, and as a consequence the rostral migratory stream is virtually absent and neuroblasts accumulate in the subventricular zone. The mutant animals exhibit severe neuroanatomical defects in the subventricular zone and in the olfactory bulb. These data demonstrate a cell-autonomous function of ApoER2, and most likely VLDLR and Dab1, in postnatal migration of neuroblasts in the forebrain, which is suggested to depend on ligands other than Reelin.


Assuntos
Encéfalo/citologia , Movimento Celular , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Receptores de LDL/metabolismo , Receptores de Lipoproteínas/metabolismo , Animais , Animais Recém-Nascidos , Moléculas de Adesão Celular Neuronais/deficiência , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/metabolismo , Proteínas Relacionadas a Receptor de LDL , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/deficiência , Bulbo Olfatório/citologia , Receptores de Lipoproteínas/deficiência , Proteína Reelina , Serina Endopeptidases/deficiência , Serina Endopeptidases/metabolismo
16.
J Neurosci ; 27(16): 4243-52, 2007 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-17442808

RESUMO

Reelin, the protein defective in reeler mutant mice, plays a key role during brain development. Reelin is processed proteolytically at two sites, and the central fragment mimics function in vitro. Here, we show that processing is functionally important in vivo, a question that could not be addressed in our previous study. New monoclonal antibodies directed against central Reelin block its binding to lipoprotein receptors and perturb cortical development in vitro, confirming the importance of the central fragment that is detected in tissue and body fluids. Processing occurs when Reelin is incubated with embryonic neurons in culture or with their supernatant, but inhibition of processing by a metalloproteinase blocker does not prevent Reelin signaling in neurons. Furthermore, neurons internalize similarly full-length or central Reelin. In contrast, inhibition of processing prevents signaling and perturbs cortical development in cultured embryonic brain slices. Moreover, in vivo, the concentration of central Reelin is dramatically and selectively increased in receptor-deficient tissue, suggesting its specific downregulation after binding to receptors and internalization. We propose that processing by end-migration neurons is required in tissue (where Reelin is likely anchored to the extracellular matrix) to release the central fragment that diffuses locally and signals to target cells, whereas, in vitro, all Reelin forms have indiscriminate access to cells, so that cleavage is not necessary for signaling.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Serina Endopeptidases/metabolismo , Animais , Movimento Celular , Células Cultivadas/metabolismo , Dipeptídeos/farmacologia , Humanos , Metaloproteinase 3 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz , Camundongos , Camundongos Mutantes Neurológicos , Técnicas de Cultura de Órgãos , Fosforilação , Receptores de Lipoproteínas/metabolismo , Proteína Reelina
17.
Cereb Cortex ; 17(1): 211-20, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16481563

RESUMO

Using a fetal brain slice culture system that recapitulates early cortical plate (CP) development, we screened the "Diversity Set" chemical library from the National Cancer Institute in order to identify molecules that interfere with radial migration and CP formation and identified 11 candidate molecules. Although most compounds had broadly similar effects, histological and immunohistochemical studies with preplate and neuronal differentiation markers disclosed some differences in the anomalies induced, suggesting that the identified molecules may act on different targets. Selected compounds were tested for activity on signaling pathways known to be important during radial migration and CP development, namely reelin, phosphatidylinositol 3-kinase/Akt-protein kinase B(PKB)/glycogen synthase kinase-3ss (GSK3beta), atypical protein kinases C (aPKC), and Cdk5. No perturbation of reelin signaling or GSK3beta activity was detected. One molecule decreased the phosphorylation of Akt and focal adhesion kinase and may act via direct or indirect inhibition of Cdk5, whereas another inhibited phosphorylation of aPKCzeta/lambda and may interfere with cell polarity and leading edge formation or progression. These molecules potentially provide new tools to study a neuronal migration and CP development.


Assuntos
Química Encefálica/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Neurônios/fisiologia , Animais , Western Blotting , Moléculas de Adesão Celular Neuronais/fisiologia , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Células Cultivadas , Córtex Cerebral/crescimento & desenvolvimento , Proteínas da Matriz Extracelular/fisiologia , Imuno-Histoquímica , Imunoprecipitação , Isoenzimas/fisiologia , Camundongos , Proteínas do Tecido Nervoso/fisiologia , Proteína Quinase C/fisiologia , Proteína Reelina , Serina Endopeptidases/fisiologia , Transdução de Sinais/fisiologia , Quinases da Família src/fisiologia
18.
Eur J Neurosci ; 23(4): 901-9, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16519655

RESUMO

Ten years following identification of Reelin as the product of the gene mutated in reeler mice, the signalling pathway activated by Reelin is being progressively unravelled with the identification of lipoprotein receptors as reelin receptors, of the Dab1 adapter and of some other proximal components in target cells. However, we are still a long way from understanding the action of this complex protein during brain development and maturation. The present review is organized in two parts. First, we summarize our present understanding of Reelin signalling. Then, we review critically some cell biological mechanisms for the action of Reelin based on recent studies on the development of the dentate gyrus, which has proved an extremely useful and tractable model system.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Movimento Celular/fisiologia , Giro Denteado/citologia , Proteínas da Matriz Extracelular/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/citologia , Serina Endopeptidases/fisiologia , Animais , Diferenciação Celular/fisiologia , Giro Denteado/crescimento & desenvolvimento , Giro Denteado/metabolismo , Humanos , Camundongos , Camundongos Mutantes Neurológicos , Modelos Biológicos , Neuroglia/fisiologia , Proteína Reelina , Transdução de Sinais/fisiologia
19.
Eur J Neurosci ; 23(4): 910-20, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16519656

RESUMO

The cortex receives its major sensory input from the thalamus via thalamocortical axons, and cortical neurons are interconnected in complex networks by corticocortical and callosal axons. Our understanding of the mechanisms generating the circuitry that confers functional properties on cortical neurons and networks, although poor, has been advanced significantly by recent research on the molecular mechanisms of thalamocortical axonal guidance and ordering. Here we review recent advances in knowledge of how thalamocortical axons are guided and how they maintain order during that process. Several studies have shown the importance in this process of guidance molecules including Eph receptors and ephrins, members of the Wnt signalling pathway and members of a novel planar cell polarity pathway. Signalling molecules and transcription factors expressed with graded concentrations across the cortex are important in establishing cortical maps of the topography of sensory surfaces. Neural activity, both spontaneous and evoked, plays a role in refining thalamocortical connections but recent work has indicated that neural activity is less important than was previously thought for the development of some early maps. A strategy used widely in the development of corticocortical and callosal connections is the early overproduction of projections followed by selection after contact with the target structure. Here we discuss recent work in primates indicating that elimination of juvenile projections is not a major mechanism in the development of pathways feeding information forward to higher levels of cortical processing, although its use is common to developing feedback pathways.


Assuntos
Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Vias Neurais/embriologia , Vias Neurais/crescimento & desenvolvimento , Animais , Axônios/fisiologia , Mapeamento Encefálico , Córtex Cerebral/citologia , Lateralidade Funcional , Humanos , Vias Neurais/citologia , Neurônios/fisiologia
20.
Antimicrob Agents Chemother ; 50(4): 1213-21, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16569831

RESUMO

Gentamicin accumulates in the lysosomes of kidney proximal tubular cells and causes apoptosis at clinically relevant doses. Gentamicin-induced apoptosis can be reproduced with cultured renal cells, but only at high extracellular concentrations (1 to 3 mM; 0.4 to 1.2 g/liter) because of its low level of uptake. We recently showed that gentamicin-induced apoptosis in LLC-PK1 cells involves a rapid (2-h) permeabilization of lysosomes and activation of the mitochondrial pathway of apoptosis (10 h). We now examine whether the delivery of gentamicin to the cytosol by electroporation would sensitize LLC-PK1 cells to apoptosis. Cells were subjected to eight pulses (1 ms) at 800 V/cm (square waves) in the presence of gentamicin (3 microM to 3 mM; 1.2 mg/liter to 1.2 g/liter); returned to gentamicin-free medium; and examined at 8 h for their Bax (a marker of mitochondrial pathway activation) contents by Western blotting and competitive reverse transcriptase PCR and at 24 h for apoptosis by 4',6'-diamidino-2'-phenylindole staining (confirmed by electron microscopy) and for necrosis (by determination of lactate dehydrogenase release). Nonelectroporated cells were incubated with gentamicin for 8 and 24 h. Significant increases in Bax levels (8 h) and apoptosis (24 h) were detected with 0.03 mM (13.2 mg/liter) gentamicin in electroporated cells compared with those achieved with 2 mM (928 mg/liter) in incubated cells. The increase in the Bax level was not associated with an increase in the level of its mRNA but was associated with the accumulation of ubiquitinated forms (probably as a result of impairment of its degradation by the proteasome). Assay of cell-associated gentamicin showed a marked, immediate, but transient accumulation in electroporated cells, whereas a slow, steady uptake was detected in incubated cells. The data indicate that cytosolic gentamicin triggers apoptosis. Sequestration of gentamicin in lysosomes would, to some extent, protect against apoptosis.


Assuntos
Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Eletroporação , Gentamicinas/farmacologia , Animais , Gentamicinas/farmacocinética , Células LLC-PK1 , Suínos , Proteína X Associada a bcl-2/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...