Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biosci ; 13(1): 32, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36793061

RESUMO

BACKGROUND: Loss of the transcription factor GLI-Similar 3 (GLIS3) function causes congenital hypothyroidism (CH) in both humans and mice due to decreased expression of several thyroid hormone (TH) biosynthetic genes in thyroid follicular cells. Whether and to what extent, GLIS3 regulates thyroid gene transcription in coordination with other thyroid transcriptional factors (TFs), such as PAX8, NKX2.1 and FOXE1, is poorly understood. METHODS: PAX8, NKX2.1, and FOXE1 ChIP-Seq analysis with mouse thyroid glands and rat thyrocyte PCCl3 cells was performed and compared to that of GLIS3 to analyze the co-regulation of gene transcription in thyroid follicular cells by these TFs. RESULTS: Analysis of the PAX8, NKX2.1, and FOXE1 cistromes identified extensive overlaps between these TF binding loci and those of GLIS3 indicating that GLIS3 shares many of the same regulatory regions with PAX8, NKX2.1, and FOXE1, particularly in genes associated with TH biosynthesis, induced by thyroid stimulating hormone (TSH), and suppressed in Glis3KO thyroid glands, including Slc5a5 (Nis), Slc26a4, Cdh16, and Adm2. ChIP-QPCR analysis showed that loss of GLIS3 did not significantly affect PAX8 or NKX2.1 binding and did not cause major alterations in H3K4me3 and H3K27me3 epigenetic signals. CONCLUSIONS: Our study indicates that GLIS3 regulates transcription of TH biosynthetic and TSH-inducible genes in thyroid follicular cells in coordination with PAX8, NKX2.1, and FOXE1 by binding within the same regulatory hub. GLIS3 does not cause major changes in chromatin structure at these common regulatory regions. GLIS3 may induce transcriptional activation by enhancing the interaction of these regulatory regions with other enhancers and/or RNA Polymerase II (Pol II) complexes.

2.
Genome Res ; 31(12): 2170-2184, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34667120

RESUMO

Bivalent chromatin is characterized by the simultaneous presence of H3K4me3 and H3K27me3, histone modifications generally associated with transcriptionally active and repressed chromatin, respectively. Prevalent in embryonic stem cells (ESCs), bivalency is postulated to poise/prime lineage-controlling developmental genes for rapid activation during embryogenesis while maintaining a transcriptionally repressed state in the absence of activation cues; however, this hypothesis remains to be directly tested. Most gene promoters DNA hypermethylated in adult human cancers are bivalently marked in ESCs, and it was speculated that bivalency predisposes them for aberrant de novo DNA methylation and irreversible silencing in cancer, but evidence supporting this model is largely lacking. Here, we show that bivalent chromatin does not poise genes for rapid activation but protects promoters from de novo DNA methylation. Genome-wide studies in differentiating ESCs reveal that activation of bivalent genes is no more rapid than that of other transcriptionally silent genes, challenging the premise that H3K4me3 is instructive for transcription. H3K4me3 at bivalent promoters-a product of the underlying DNA sequence-persists in nearly all cell types irrespective of gene expression and confers protection from de novo DNA methylation. Bivalent genes in ESCs that are frequent targets of aberrant hypermethylation in cancer are particularly strongly associated with loss of H3K4me3/bivalency in cancer. Altogether, our findings suggest that bivalency protects reversibly repressed genes from irreversible silencing and that loss of H3K4me3 may make them more susceptible to aberrant DNA methylation in diseases such as cancer. Bivalency may thus represent a distinct regulatory mechanism for maintaining epigenetic plasticity.

3.
Nucleic Acids Res ; 48(4): 1828-1842, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31853542

RESUMO

The developmental potential of cells, termed pluripotency, is highly dynamic and progresses through a continuum of naive, formative and primed states. Pluripotency progression of mouse embryonic stem cells (ESCs) from naive to formative and primed state is governed by transcription factors (TFs) and their target genes. Genomic techniques have uncovered a multitude of TF binding sites in ESCs, yet a major challenge lies in identifying target genes from functional binding sites and reconstructing dynamic transcriptional networks underlying pluripotency progression. Here, we integrated time-resolved 'trans-omic' datasets together with TF binding profiles and chromatin conformation data to identify target genes of a panel of TFs. Our analyses revealed that naive TF target genes are more likely to be TFs themselves than those of formative TFs, suggesting denser hierarchies among naive TFs. We also discovered that formative TF target genes are marked by permissive epigenomic signatures in the naive state, indicating that they are poised for expression prior to the initiation of pluripotency transition to the formative state. Finally, our reconstructed transcriptional networks pinpointed the precise timing from naive to formative pluripotency progression and enabled the spatiotemporal mapping of differentiating ESCs to their in vivo counterparts in developing embryos.


Assuntos
Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/genética , Animais , Sítios de Ligação/genética , Diferenciação Celular/genética , Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Genoma/genética , Camundongos
4.
Nat Commun ; 10(1): 3072, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296853

RESUMO

Faithful transcription initiation is critical for accurate gene expression, yet the mechanisms underlying specific transcription start site (TSS) selection in mammals remain unclear. Here, we show that the histone-fold domain protein NF-Y, a ubiquitously expressed transcription factor, controls the fidelity of transcription initiation at gene promoters in mouse embryonic stem cells. We report that NF-Y maintains the region upstream of TSSs in a nucleosome-depleted state while simultaneously protecting this accessible region against aberrant and/or ectopic transcription initiation. We find that loss of NF-Y binding in mammalian cells disrupts the promoter chromatin landscape, leading to nucleosomal encroachment over the canonical TSS. Importantly, this chromatin rearrangement is accompanied by upstream relocation of the transcription pre-initiation complex and ectopic transcription initiation. Further, this phenomenon generates aberrant extended transcripts that undergo translation, disrupting gene expression profiles. These results suggest NF-Y is a central player in TSS selection in metazoans and highlight the deleterious consequences of inaccurate transcription initiation.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Nucleossomos/metabolismo , Sítio de Iniciação de Transcrição , Iniciação da Transcrição Genética , Animais , Fator de Ligação a CCAAT/genética , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Células-Tronco Embrionárias , Técnicas de Silenciamento de Genes , Camundongos , Nucleossomos/genética , Regiões Promotoras Genéticas/genética , RNA Interferente Pequeno/metabolismo
5.
Cell Syst ; 8(5): 427-445.e10, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31078527

RESUMO

Pluripotency is highly dynamic and progresses through a continuum of pluripotent stem cell states. The two states that bookend the pluripotency continuum, naive and primed, are well characterized, but our understanding of the intermediate states and transitions between them remains incomplete. Here, we dissect the dynamics of pluripotent state transitions underlying pre- to post-implantation epiblast differentiation. Through comprehensive mapping of the proteome, phosphoproteome, transcriptome, and epigenome of embryonic stem cells transitioning from naive to primed pluripotency, we find that rapid, acute, and widespread changes to the phosphoproteome precede ordered changes to the epigenome, transcriptome, and proteome. Reconstruction of the kinase-substrate networks reveals signaling cascades, dynamics, and crosstalk. Distinct waves of global proteomic changes mark discrete phases of pluripotency, with cell-state-specific surface markers tracking pluripotent state transitions. Our data provide new insights into multi-layered control of the phased progression of pluripotency and a foundation for modeling mechanisms regulating pluripotent state transitions (www.stemcellatlas.org).


Assuntos
Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/fisiologia , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Epigenoma/genética , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Humanos , Proteoma/metabolismo , Transdução de Sinais , Transcriptoma/genética
6.
Stem Cells ; 37(2): 202-215, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30376208

RESUMO

Anterior-posterior (A-P) specification of the neural tube involves initial acquisition of anterior fate followed by the induction of posterior characteristics in the primitive anterior neuroectoderm. Several morphogens have been implicated in the regulation of A-P neural patterning; however, our understanding of the upstream regulators of these morphogens remains incomplete. Here, we show that the Krüppel-like zinc finger transcription factor GLI-Similar 3 (GLIS3) can direct differentiation of human embryonic stem cells (hESCs) into posterior neural progenitor cells in lieu of the default anterior pathway. Transcriptomic analyses reveal that this switch in cell fate is due to rapid activation of Wingless/Integrated (WNT) signaling pathway. Mechanistically, through genome-wide RNA-Seq, ChIP-Seq, and functional analyses, we show that GLIS3 binds to and directly regulates the transcription of several WNT genes, including the strong posteriorizing factor WNT3A, and that inhibition of WNT signaling is sufficient to abrogate GLIS3-induced posterior specification. Our findings suggest a potential role for GLIS3 in the regulation of A-P specification through direct transcriptional activation of WNT genes. Stem Cells 2018 Stem Cells 2019;37:202-215.


Assuntos
Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Neurais/citologia , Proteínas Repressoras/genética , Transativadores/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Neurais/metabolismo , Ativação Transcricional , Via de Sinalização Wnt
7.
J Clin Invest ; 127(12): 4326-4337, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29083325

RESUMO

Deficiency in Krüppel-like zinc finger transcription factor GLI-similar 3 (GLIS3) in humans is associated with the development of congenital hypothyroidism. However, the functions of GLIS3 in the thyroid gland and the mechanism by which GLIS3 dysfunction causes hypothyroidism are unknown. In the current study, we demonstrate that GLIS3 acts downstream of thyroid-stimulating hormone (TSH) and TSH receptor (TSHR) and is indispensable for TSH/TSHR-mediated proliferation of thyroid follicular cells and biosynthesis of thyroid hormone. Using ChIP-Seq and promoter analysis, we demonstrate that GLIS3 is critical for the transcriptional activation of several genes required for thyroid hormone biosynthesis, including the iodide transporters Nis and Pds, both of which showed enhanced GLIS3 binding at their promoters. The repression of cell proliferation of GLIS3-deficient thyroid follicular cells was due to the inhibition of TSH-mediated activation of the mTOR complex 1/ribosomal protein S6 (mTORC1/RPS6) pathway as well as the reduced expression of several cell division-related genes regulated directly by GLIS3. Consequently, GLIS3 deficiency in a murine model prevented the development of goiter as well as the induction of inflammatory and fibrotic genes during chronic elevation of circulating TSH. Our study identifies GLIS3 as a key regulator of TSH/TSHR-mediated thyroid hormone biosynthesis and proliferation of thyroid follicular cells and uncovers a mechanism by which GLIS3 deficiency causes neonatal hypothyroidism and prevents goiter development.


Assuntos
Proliferação de Células , Receptores da Tireotropina/metabolismo , Proteínas Repressoras/metabolismo , Glândula Tireoide/metabolismo , Hormônios Tireóideos/biossíntese , Tireotropina/metabolismo , Transativadores/metabolismo , Animais , Proteínas de Ligação a DNA , Bócio/genética , Bócio/metabolismo , Bócio/prevenção & controle , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Receptores da Tireotropina/genética , Proteínas Repressoras/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Simportadores/genética , Simportadores/metabolismo , Glândula Tireoide/citologia , Hormônios Tireóideos/genética , Tireotropina/genética , Transativadores/genética
8.
Mol Cell ; 68(1): 104-117.e6, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28985501

RESUMO

Eukaryotic gene transcription is regulated at many steps, including RNA polymerase II (Pol II) recruitment, transcription initiation, promoter-proximal Pol II pause release, and transcription termination; however, mechanisms regulating transcription during productive elongation remain poorly understood. Enhancers, which activate gene transcription, themselves undergo Pol II-mediated transcription, but our understanding of enhancer transcription and enhancer RNAs (eRNAs) remains incomplete. Here we show that transcription at intragenic enhancers interferes with and attenuates host gene transcription during productive elongation. While the extent of attenuation correlates positively with nascent eRNA expression, the act of intragenic enhancer transcription alone, but not eRNAs, explains the attenuation. Through CRISPR/Cas9-mediated deletions, we demonstrate a physiological role for intragenic enhancer-mediated transcription attenuation in cell fate determination. We propose that intragenic enhancers not only enhance transcription of one or more genes from a distance but also fine-tune transcription of their host gene through transcription interference, facilitating differential utilization of the same regulatory element for disparate functions.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Células-Tronco Embrionárias Murinas/metabolismo , RNA Polimerase II/genética , Elongação da Transcrição Genética , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Cromatina/química , Cromatina/metabolismo , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Edição de Genes , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Regiões Promotoras Genéticas , RNA/genética , RNA/metabolismo , RNA Polimerase II/metabolismo
9.
Stem Cell Reports ; 7(5): 897-910, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27746116

RESUMO

Poly(A) tail length and mRNA deadenylation play important roles in gene regulation. However, how they regulate embryonic development and pluripotent cell fate is not fully understood. Here we present evidence that CNOT3-dependent mRNA deadenylation governs the pluripotent state. We show that CNOT3, a component of the Ccr4-Not deadenylase complex, is required for mouse epiblast maintenance. It is highly expressed in blastocysts and its deletion leads to peri-implantation lethality. The epiblast cells in Cnot3 deletion embryos are quickly lost during diapause and fail to outgrow in culture. Mechanistically, CNOT3 C terminus is required for its interaction with the complex and its function in embryonic stem cells (ESCs). Furthermore, Cnot3 deletion results in increases in the poly(A) tail lengths, half-lives, and steady-state levels of differentiation gene mRNAs. The half-lives of CNOT3 target mRNAs are shorter in ESCs and become longer during normal differentiation. Together, we propose that CNOT3 maintains the pluripotent state by promoting differentiation gene mRNA deadenylation and degradation, and we identify poly(A) tail-length regulation as a post-transcriptional mechanism that controls pluripotency.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Autorrenovação Celular/genética , Desenvolvimento Embrionário/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/embriologia , Camadas Germinativas/metabolismo , Camundongos , Camundongos Knockout , Domínios Proteicos/genética , Estabilidade de RNA , Fatores de Transcrição/química , Fatores de Transcrição/genética
10.
Cell Rep ; 17(1): 29-36, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27681418

RESUMO

FGF21 improves the metabolic profile of obese animals through its actions on adipocytes. To elucidate the signaling network responsible for mediating these effects, we quantified dynamic changes in the adipocyte phosphoproteome following acute exposure to FGF21. FGF21 regulated a network of 821 phosphosites on 542 proteins. A major FGF21-regulated signaling node was mTORC1/S6K. In contrast to insulin, FGF21 activated mTORC1 via MAPK rather than through the canonical PI3K/AKT pathway. Activation of mTORC1/S6K by FGF21 was surprising because this is thought to contribute to deleterious metabolic effects such as obesity and insulin resistance. Rather, mTORC1 mediated many of the beneficial actions of FGF21 in vitro, including UCP1 and FGF21 induction, increased adiponectin secretion, and enhanced glucose uptake without any adverse effects on insulin action. This study provides a global view of FGF21 signaling and suggests that mTORC1 may act to facilitate FGF21-mediated health benefits in vivo.


Assuntos
Adipócitos/efeitos dos fármacos , Adiponectina/genética , Fatores de Crescimento de Fibroblastos/farmacologia , Complexos Multiproteicos/genética , Fosfoproteínas/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Serina-Treonina Quinases TOR/genética , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Adiponectina/agonistas , Adiponectina/metabolismo , Animais , Diferenciação Celular , Desoxiglucose/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Injeções Intraperitoneais , Marcação por Isótopo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/agonistas , Complexos Multiproteicos/metabolismo , Fosfoproteínas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Gordura Subcutânea Abdominal/citologia , Gordura Subcutânea Abdominal/efeitos dos fármacos , Gordura Subcutânea Abdominal/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína Desacopladora 1/agonistas , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
11.
Proteomics ; 16(13): 1868-71, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27145998

RESUMO

Mass spectrometry (MS)-based quantitative phosphoproteomics has become a key approach for proteome-wide profiling of phosphorylation in tissues and cells. Traditional experimental design often compares a single treatment with a control, whereas increasingly more experiments are designed to compare multiple treatments with respect to a control. To this end, the development of bioinformatic tools that can integrate multiple treatments and visualise kinases and substrates under combinatorial perturbations is vital for dissecting concordant and/or independent effects of each treatment. Here, we propose a hypothesis driven kinase perturbation analysis (KinasePA) to annotate and visualise kinases and their substrates that are perturbed by various combinatorial effects of treatments in phosphoproteomics experiments. We demonstrate the utility of KinasePA through its application to two large-scale phosphoproteomics datasets and show its effectiveness in dissecting kinases and substrates within signalling pathways driven by unique combinations of cellular stimuli and inhibitors. We implemented and incorporated KinasePA as part of the "directPA" R package available from the comprehensive R archive network (CRAN). Furthermore, KinasePA also has an interactive web interface that can be readily applied to annotate user provided phosphoproteomics data (http://kinasepa.pengyiyang.org).


Assuntos
Proteínas Quinases/metabolismo , Proteômica/métodos , Linhagem Celular , Cromonas/farmacologia , Bases de Dados de Proteínas , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Insulina/metabolismo , Morfolinas/farmacologia , Naftiridinas/farmacologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
12.
Bioinformatics ; 32(2): 252-9, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26395771

RESUMO

MOTIVATION: Protein phosphorylation is a post-translational modification that underlines various aspects of cellular signaling. A key step to reconstructing signaling networks involves identification of the set of all kinases and their substrates. Experimental characterization of kinase substrates is both expensive and time-consuming. To expedite the discovery of novel substrates, computational approaches based on kinase recognition sequence (motifs) from known substrates, protein structure, interaction and co-localization have been proposed. However, rarely do these methods take into account the dynamic responses of signaling cascades measured from in vivo cellular systems. Given that recent advances in mass spectrometry-based technologies make it possible to quantify phosphorylation on a proteome-wide scale, computational approaches that can integrate static features with dynamic phosphoproteome data would greatly facilitate the prediction of biologically relevant kinase-specific substrates. RESULTS: Here, we propose a positive-unlabeled ensemble learning approach that integrates dynamic phosphoproteomics data with static kinase recognition motifs to predict novel substrates for kinases of interest. We extended a positive-unlabeled learning technique for an ensemble model, which significantly improves prediction sensitivity on novel substrates of kinases while retaining high specificity. We evaluated the performance of the proposed model using simulation studies and subsequently applied it to predict novel substrates of key kinases relevant to insulin signaling. Our analyses show that static sequence motifs and dynamic phosphoproteomics data are complementary and that the proposed integrated model performs better than methods relying only on static information for accurate prediction of kinase-specific substrates. AVAILABILITY AND IMPLEMENTATION: Executable GUI tool, source code and documentation are freely available at https://github.com/PengyiYang/KSP-PUEL. CONTACT: pengyi.yang@nih.gov or jothi@mail.nih.gov SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Insulina/metabolismo , Espectrometria de Massas/métodos , Fosfoproteínas/metabolismo , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/análise , Proteômica/métodos , Bases de Dados de Proteínas , Humanos , Fosforilação , Transdução de Sinais , Especificidade por Substrato
13.
Cell Metab ; 22(5): 922-35, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26437602

RESUMO

Exercise is essential in regulating energy metabolism and whole-body insulin sensitivity. To explore the exercise signaling network, we undertook a global analysis of protein phosphorylation in human skeletal muscle biopsies from untrained healthy males before and after a single high-intensity exercise bout, revealing 1,004 unique exercise-regulated phosphosites on 562 proteins. These included substrates of known exercise-regulated kinases (AMPK, PKA, CaMK, MAPK, mTOR), yet the majority of kinases and substrate phosphosites have not previously been implicated in exercise signaling. Given the importance of AMPK in exercise-regulated metabolism, we performed a targeted in vitro AMPK screen and employed machine learning to predict exercise-regulated AMPK substrates. We validated eight predicted AMPK substrates, including AKAP1, using targeted phosphoproteomics. Functional characterization revealed an undescribed role for AMPK-dependent phosphorylation of AKAP1 in mitochondrial respiration. These data expose the unexplored complexity of acute exercise signaling and provide insights into the role of AMPK in mitochondrial biochemistry.


Assuntos
Proteínas de Ancoragem à Quinase A/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Adulto , Metabolismo Energético , Humanos , Aprendizado de Máquina , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Condicionamento Físico Animal , Transdução de Sinais , Especificidade por Substrato
14.
PLoS Comput Biol ; 11(8): e1004403, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26252020

RESUMO

Cell signaling underlies transcription/epigenetic control of a vast majority of cell-fate decisions. A key goal in cell signaling studies is to identify the set of kinases that underlie key signaling events. In a typical phosphoproteomics study, phosphorylation sites (substrates) of active kinases are quantified proteome-wide. By analyzing the activities of phosphorylation sites over a time-course, the temporal dynamics of signaling cascades can be elucidated. Since many substrates of a given kinase have similar temporal kinetics, clustering phosphorylation sites into distinctive clusters can facilitate identification of their respective kinases. Here we present a knowledge-based CLUster Evaluation (CLUE) approach for identifying the most informative partitioning of a given temporal phosphoproteomics data. Our approach utilizes prior knowledge, annotated kinase-substrate relationships mined from literature and curated databases, to first generate biologically meaningful partitioning of the phosphorylation sites and then determine key kinases associated with each cluster. We demonstrate the utility of the proposed approach on two time-series phosphoproteomics datasets and identify key kinases associated with human embryonic stem cell differentiation and insulin signaling pathway. The proposed approach will be a valuable resource in the identification and characterizing of signaling networks from phosphoproteomics data.


Assuntos
Comunicação Celular/fisiologia , Bases de Conhecimento , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Transdução de Sinais/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Bases de Dados de Proteínas , Células-Tronco Embrionárias , Humanos
15.
Nat Commun ; 6: 6910, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25908435

RESUMO

Mammary stem/progenitor cells (MaSCs) maintain self-renewal of the mammary epithelium during puberty and pregnancy. DNA methylation provides a potential epigenetic mechanism for maintaining cellular memory during self-renewal. Although DNA methyltransferases (DNMTs) are dispensable for embryonic stem cell maintenance, their role in maintaining MaSCs and cancer stem cells (CSCs) in constantly replenishing mammary epithelium is unclear. Here we show that DNMT1 is indispensable for MaSC maintenance. Furthermore, we find that DNMT1 expression is elevated in mammary tumours, and mammary gland-specific DNMT1 deletion protects mice from mammary tumorigenesis by limiting the CSC pool. Through genome-scale methylation studies, we identify ISL1 as a direct DNMT1 target, hypermethylated and downregulated in mammary tumours and CSCs. DNMT inhibition or ISL1 expression in breast cancer cells limits CSC population. Altogether, our studies uncover an essential role for DNMT1 in MaSC and CSC maintenance and identify DNMT1-ISL1 axis as a potential therapeutic target for breast cancer treatment.


Assuntos
Neoplasias da Mama/genética , Carcinogênese/genética , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas com Homeodomínio LIM/genética , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Experimentais/genética , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição/genética , Animais , Western Blotting , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Regulação para Baixo , Feminino , Humanos , Proteínas com Homeodomínio LIM/metabolismo , Células MCF-7 , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Microscopia de Fluorescência , Células-Tronco Neoplásicas/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
16.
Mol Cell ; 55(5): 708-22, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25132174

RESUMO

Cell type-specific master transcription factors (TFs) play vital roles in defining cell identity and function. However, the roles ubiquitous factors play in the specification of cell identity remain underappreciated. Here we show that the ubiquitous CCAAT-binding NF-Y complex is required for the maintenance of embryonic stem cell (ESC) identity and is an essential component of the core pluripotency network. Genome-wide studies in ESCs and neurons reveal that NF-Y regulates not only genes with housekeeping functions through cell type-invariant promoter-proximal binding, but also genes required for cell identity by binding to cell type-specific enhancers with master TFs. Mechanistically, NF-Y's distinct DNA-binding mode promotes master/pioneer TF binding at enhancers by facilitating a permissive chromatin conformation. Our studies unearth a conceptually unique function for histone-fold domain (HFD) protein NF-Y in promoting chromatin accessibility and suggest that other HFD proteins with analogous structural and DNA-binding properties may function in similar ways.


Assuntos
Fator de Ligação a CCAAT/fisiologia , Cromatina/metabolismo , Histonas/metabolismo , Animais , Sítios de Ligação , Fator de Ligação a CCAAT/metabolismo , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/ultraestrutura , Camundongos , Modelos Genéticos , Nucleossomos/química , Nucleossomos/metabolismo , Células-Tronco Pluripotentes , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
17.
PLoS Genet ; 10(5): e1004331, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24831725

RESUMO

The hepatic circadian clock plays a key role in the daily regulation of glucose metabolism, but the precise molecular mechanisms that coordinate these two biological processes are not fully understood. In this study, we identify a novel connection between the regulation of RORγ by the clock machinery and the diurnal regulation of glucose metabolic networks. We demonstrate that particularly at daytime, mice deficient in RORγ exhibit improved insulin sensitivity and glucose tolerance due to reduced hepatic gluconeogenesis. This is associated with a reduced peak expression of several glucose metabolic genes critical in the control of gluconeogenesis and glycolysis. Genome-wide cistromic profiling, promoter and mutation analysis support the concept that RORγ regulates the transcription of several glucose metabolic genes directly by binding ROREs in their promoter regulatory region. Similar observations were made in liver-specific RORγ-deficient mice suggesting that the changes in glucose homeostasis were directly related to the loss of hepatic RORγ expression. Altogether, our study shows that RORγ regulates several glucose metabolic genes downstream of the hepatic clock and identifies a novel metabolic function for RORγ in the diurnal regulation of hepatic gluconeogenesis and insulin sensitivity. The inhibition of the activation of several metabolic gene promoters by an RORγ antagonist suggests that antagonists may provide a novel strategy in the management of metabolic diseases, including type 2 diabetes.


Assuntos
Ritmo Circadiano/genética , Glucose/metabolismo , Resistência à Insulina , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/biossíntese , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Humanos , Insulina/genética , Insulina/metabolismo , Fígado/metabolismo , Fígado/patologia , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/deficiência , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Tretinoína/farmacologia
18.
Cell Stem Cell ; 14(5): 575-91, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24792115

RESUMO

The master transcription factors play integral roles in the pluripotency transcription circuitry of embryonic stem cells (ESCs). How they selectively activate expression of the pluripotency network while simultaneously repressing genes involved in differentiation is not fully understood. Here, we define a requirement for the INO80 complex, a SWI/SNF family chromatin remodeler, in ESC self-renewal, somatic cell reprogramming, and blastocyst development. We show that Ino80, the chromatin remodeling ATPase, co-occupies pluripotency gene promoters with the master transcription factors, and its occupancy is dependent on OCT4 and WDR5. At the pluripotency genes, Ino80 maintains an open chromatin architecture and licenses recruitment of Mediator and RNA polymerase II for gene activation. Our data reveal an essential role for INO80 in the expression of the pluripotency network and illustrate the coordination among chromatin remodeler, transcription factor, and histone-modifying enzyme in the regulation of the pluripotent state.


Assuntos
Blastocisto/citologia , DNA Helicases/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Animais , Blastocisto/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/fisiologia , DNA Helicases/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Modelos Biológicos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteínas/genética , Proteínas/metabolismo
19.
Proc Natl Acad Sci U S A ; 111(16): E1581-90, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24711389

RESUMO

Identification of genes associated with specific biological phenotypes is a fundamental step toward understanding the molecular basis underlying development and pathogenesis. Although RNAi-based high-throughput screens are routinely used for this task, false discovery and sensitivity remain a challenge. Here we describe a computational framework for systematic integration of published gene expression data to identify genes defining a phenotype of interest. We applied our approach to rank-order all genes based on their likelihood of determining ES cell (ESC) identity. RNAi-mediated loss-of-function experiments on top-ranked genes unearthed many novel determinants of ESC identity, thus validating the derived gene ranks to serve as a rich and valuable resource for those working to uncover novel ESC regulators. Underscoring the value of our gene ranks, functional studies of our top-hit Nucleolin (Ncl), abundant in stem and cancer cells, revealed Ncl's essential role in the maintenance of ESC homeostasis by shielding against differentiation-inducing redox imbalance-induced oxidative stress. Notably, we report a conceptually novel mechanism involving a Nucleolin-dependent Nanog-p53 bistable switch regulating the homeostatic balance between self-renewal and differentiation in ESCs. Our findings connect the dots on a previously unknown regulatory circuitry involving genes associated with traits in both ESCs and cancer and might have profound implications for understanding cell fate decisions in cancer stem cells. The proposed computational framework, by helping to prioritize and preselect candidate genes for tests using complex and expensive genetic screens, provides a powerful yet inexpensive means for identification of key cell identity genes.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Homeostase/genética , Animais , Diferenciação Celular/genética , Proliferação de Células , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteína Homeobox Nanog , Estresse Oxidativo/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Nucleolina
20.
EMBO J ; 33(8): 878-89, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24596251

RESUMO

mRNA alternative polyadenylation (APA) plays a critical role in post-transcriptional gene control and is highly regulated during development and disease. However, the regulatory mechanisms and functional consequences of APA remain poorly understood. Here, we show that an mRNA 3' processing factor, Fip1, is essential for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. Fip1 promotes stem cell maintenance, in part, by activating the ESC-specific APA profiles to ensure the optimal expression of a specific set of genes, including critical self-renewal factors. Fip1 expression and the Fip1-dependent APA program change during ESC differentiation and are restored to an ESC-like state during somatic reprogramming. Mechanistically, we provide evidence that the specificity of Fip1-mediated APA regulation depends on multiple factors, including Fip1-RNA interactions and the distance between APA sites. Together, our data highlight the role for post-transcriptional control in stem cell self-renewal, provide mechanistic insight on APA regulation in development, and establish an important function for APA in cell fate specification.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Células-Tronco/fisiologia , Animais , Camundongos , Modelos Biológicos , Poliadenilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...