Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(37): 26111-26120, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37664213

RESUMO

Inflammation is a multifaceted "second-line" adaptive defense mechanism triggered by exo/endogenous threating stimuli and inter-communicated by various inflammatory key players. Unresolved or dysregulated inflammation in lungs results in manifestation of diseases and leads to irreparable damage. Aquaporins (AQPs) are a ubiquitously expressed superfamily of intrinsic transmembrane water channel proteins that modulate the fluid homeostasis. In addition to their conventional functions, AQPs have clinical relevance to inflammation prevailing under the infectious conditions of various lung diseases and this proclaims them as appropriate biomarkers to be targeted. Hence an endeavor was undertaken to identify potential ligands to target AQP4 for the treatment of lung diseases. Oxazole being a versatile bio-potent core, a series of 2,4,5-trisubstituted oxazoles 3a-j were synthesized by a Lewis acid mediated reaction of aroylmethylidene malonates with nitriles. In silico studies conducted using the protein data bank (PDB) structure 3gd8 for AQP4 revealed that compound 3a would serve as a suitable candidate to inhibit AQP4 in human lung cells (NCI-H460). Further, in vitro studies demonstrated that compound 3a could effectively inhibit AQP4 and inflammatory cytokines in lung cells and hence it may be considered as a viable drug candidate for the treatment of various lung diseases.

2.
Comb Chem High Throughput Screen ; 26(12): 2113-2123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35670352

RESUMO

Alzheimer's Disease (AD), the most common and major disability issue in our society, has a substantial economic impact. Despite substantial advances in aetiology, diagnosis, and therapy, the fundamental causes of the disease remain unknown, accurate biomarkers are not well characterized, and current pharmaceutical medications are not cost-effective. Effective care for Alzheimer's disease and other types of dementia is crucial for patients' long-term health. Pathogenesis advances have aroused the scientific community's interest in the creation of new pharmacological treatments that target recognized disease targets throughout the previous two decades. Pharmacological therapy has recently been assigned 10 - 20% of the direct costs of AD. Less than 20% of Alzheimer's patients respond somewhat to standard medicines with questionable cost-effectiveness (donepezil, galantamine, memantine and rivastigmine). Therefore, currently known treatment approaches address the condition indirectly, as acetyl cholinesterase related inhibitors and the Nmethyl d-aspartate as receptor and antagonists have little effect on the sickness. Novel targets and specific small molecules must also be found in order to be useful in the therapy of AD. This chapter examines a wide spectrum of Alzheimer's disease targets as well as contemporary progress in the discovery of disease inhibitors. In addition, brief in-silico investigations were highlighted and provided to understand how the theoretical lead in AD treatment development is attainable.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Piperidinas , Indanos , Fenilcarbamatos/uso terapêutico , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Descoberta de Drogas
3.
Bioinorg Chem Appl ; 2022: 8635054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35340421

RESUMO

COVID-19 is more virulent and challenging to human life. In India, the Ministry of AYUSH recommended some strategies through Siddha, homeopathy, and other methods to effectively manage COVID-19 (Guidelines for AYUSH Clinical Studies in COVID-19, 2020). Kabasura Kudineer and homeopathy medicines are in use for the prevention and treatment of COVID-19 infection; however, the mechanism of action is less explored. This study aims to understand the antagonist activity of natural compounds found in Kabasura Kudineer and homeopathy medicines against the SARS-CoV-2 using computational methods. Potential compounds were screened against NSP-12, NSP-13, NSP-14, NSP-15, main protease, and spike proteins. Structure-based virtual screening results shows that, out of 14,682 Kabasura Kudineer compounds, the 250395, 129677029, 44259583, 44259584, and 88583189 compounds and, out of 3,112 homeopathy compounds, the 3802778, 320361, 5315832, 14590080, and 74029795 compounds have good scoring function against the SARS-CoV-2 structural and nonstructural proteins. As a result of docking, homeopathy compounds have a docking score ranging from -5.636 to 13.631 kcal/mol, while Kabasura Kudineer compounds have a docking score varying from -8.290 to -13.759 kcal/mol. It has been found that the selected compounds bind well to the active site of SARS-CoV-2 proteins and form hydrogen bonds. The molecular dynamics simulation study shows that the selected compounds have maintained stable conformation in the simulation period and interact with the target. This study supports the antagonist activity of natural compounds from Kabasura Kudineer and homeopathy against SARS-CoV-2's structural and nonstructural proteins.

5.
Sci Rep ; 10(1): 21005, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273505

RESUMO

Maintaining genomic stability is inevitable for organism survival and it is challenged by mutagenic agents, which include ultraviolet (UV) radiation. Whenever DNA damage occurs, it is sensed by DNA-repairing proteins and thereby performing the DNA-repair mechanism. Specifically, in response to DNA damage, H2AX is a key protein involved in initiating the DNA-repair processes. In this present study, we investigate the effect of UV-C on earthworm, Perionyx excavatus and analyzed the DNA-damage response. Briefly, we expose the worms to different doses of UV-C and find that worms are highly sensitive to UV-C. As a primary response, earthworms produce coelomic fluid followed by autotomy. However, tissue inflammation followed by death is observed when we expose worm to increased doses of UV-C. In particular, UV-C promotes damages in skin layers and on the contrary, it mediates the chloragogen and epithelial outgrowth in intestinal tissues. Furthermore, UV-C promotes DNA damages followed by upregulation of H2AX on dose-dependent manner. Our finding confirms DNA damage caused by UV-C is directly proportional to the expression of H2AX. In short, we conclude that H2AX is present in the invertebrate earthworm, which plays an evolutionarily conserved role in DNA damage event as like that in higher animals.


Assuntos
Dano ao DNA , Proteínas de Helminto/metabolismo , Histonas/metabolismo , Oligoquetos/efeitos da radiação , Raios Ultravioleta , Animais , Proteínas de Helminto/genética , Histonas/genética , Oligoquetos/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...