Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Behav ; 14(8): e70003, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39183509

RESUMO

OBJECTIVES: In schizophrenia, nonspecific lighting likely causes sleep timing disturbances, leading to distress and poorer clinical status. However, the effect of exposure to circadian lighting on psychopathology outcome in schizophrenia remains unknown. Hence, this study aimed to develop such an intervention and investigate its impact on schizophrenia. METHODS: Twenty schizophrenia patients at a psychiatric nursing institute were monitored over 10 weeks, with assessments using the Brief Psychiatric Rating Scale (BPRS) and Mini-Mental State Examination (MMSE) conducted at baseline, weeks 3 (T1), 7 (T2), and 10 (T3). RESULTS: Circadian lighting significantly improved BPRS scores between T1-T2 (p < .05) and T1-T3 (p < .001), with affectivity scores also showing significant enhancements postintervention. Notably, female participants exhibited substantial improvements in BPRS scores from T1 to T3 (p < .01), while male participants demonstrated significant gains in MMSE scores from T1 to T2 (p < .01). CONCLUSIONS: Circadian lighting presents a promising intervention for improving psychiatric outcomes in schizophrenia, with distinct benefits observed across different psychopathological aspects and genders. These findings underscore the potential of lighting chronotherapy in psychiatric clinical practice and warrant further exploration in related research.


Assuntos
Iluminação , Esquizofrenia , Humanos , Esquizofrenia/fisiopatologia , Esquizofrenia/terapia , Masculino , Feminino , Adulto , Estudos Prospectivos , Pessoa de Meia-Idade , Pacientes Internados , Ritmo Circadiano/fisiologia , Escalas de Graduação Psiquiátrica Breve , Psicologia do Esquizofrênico , Testes de Estado Mental e Demência
2.
Molecules ; 29(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611951

RESUMO

Over the past few decades, organic light-emitting diodes (OLEDs) find applications in smartphones, televisions, and the automotive sector. However, this technology is still not perfect, and its application for lighting purposes has been slow. For further development of the OLEDs, we designed twisted donor-acceptor-type electroactive bipolar derivatives using benzophenone and bicarbazole as building blocks. Derivatives were synthesized through the reaction of 4-fluorobenzophenone with various mono-alkylated 3,3'-bicarbazoles. We have provided a comprehensive structural characterization of these compounds. The new materials are amorphous and exhibit suitable glass transition temperatures ranging from 57 to 102 °C. They also demonstrate high thermal stability, with decomposition temperatures reaching 400 °C. The developed compounds exhibit elevated photoluminescence quantum yields (PLQY) of up to 75.5% and favourable HOMO-LUMO levels, along with suitable triplet-singlet state energy values. Due to their good solubility and suitable film-forming properties, all the compounds were evaluated as blue TADF emitters dispersed in commercial 4,4'-bis(N-carbazolyl)-1,10-biphenyl (CBP) host material and used for the formation of emissive layer of organic light-emitting diodes (OLEDs) in concentration-dependent experiments. Out of these experiments, the OLED with 15 wt% of the emitting derivative 4-(9'-{2-ethylhexyl}-[3,3']-bicarbazol-9-yl)benzophenone exhibited superior performance. It attained a maximum brightness of 3581 cd/m2, a current efficacy of 5.7 cd/A, a power efficacy of 4.1 lm/W, and an external quantum efficacy of 2.7%.

3.
Phys Chem Chem Phys ; 26(15): 11922-11932, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572672

RESUMO

In recent times, self-assembled electron transport materials for optoelectronic devices, both solar cells and organic light-emitting diodes (OLEDs), have been gaining much interest as they help in fabricating high-efficiency devices. However, designing organic small molecular materials with star-shaped self-assembled networks is a challenge. To achieve this sort of target, we chose triazine and benzene-1,3,5-tricarbonyl cores for developing such architecture, and we developed four molecular systems, vizTCpCN, TCmCN, TmCN, and TpCN. Successful isolation of single crystals followed by structural analysis of TmCN revealed interesting molecular arrangements in the solid state resulting in the formation of a waterwheel type architecture with an extended network bearing characteristic voids. Theoretical calculations was carried out to check their electron transportability. The natural transition orbital calculation helped in understanding the locally excited and charge transfer excited states. The low electron reorganization energies of these molecules indicated that these materials may have potential to be used in electron transport layers of optoelectronic devices, particularly in OLEDs. Moreover, the assembled networks have a relatively wide surface area and linked structures, which are advantageous for the conduction of carriers with poor electron recombination inside the ETL, and these may offer a straightforward channel for electron conduction to the emissive layer. Finally, the fabricated electron-only device indicated that the synthesized materials may be used as ETMs in the electron transport layer of optoelectronic devices.

4.
Langmuir ; 40(10): 5137-5150, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412064

RESUMO

Imidazole, being an interesting dinitrogenic five-membered heterocyclic core, has been widely explored during the last several decades for developing various fascinating materials. Among the different domains where imidazole-based materials find wide applications, the area of optoelectronics has seen an overwhelming growth of functional imidazole derivatives developed through remarkable design and synthesis strategies. The present work reports a design approach for integrating bulky donor units at the four terminals of an imidazole core, leading to the development of sterically populated imidazole-based molecular platforms with interesting structural features. Rationally chosen starting substrates led to the incorporation of a bulky donor at the four terminals of the imidazole core. In addition, homo- and cofunctional molecular systems were synthesized through a suitable combination of initial ingredients. Our approach was extended to develop a series of four molecular systems, i.e., Cz3PhI, Cz4I, Cz3PzI, and TPA3CzI, containing carbazole, phenothiazine, and triphenylamine as known efficient donors at the periphery. Given their interesting structural features, three sterically crowded molecules (Cz4I, Cz3PzI, and TPA3CzI) were screened by using DFT and TD-DFT calculations to investigate their potential as hole transport materials (HTMs) for optoelectronic devices. The theoretical studies on several aspects including hole reorganization and exciton binding energies, ionization potential, etc., revealed their potential as possible candidates for the hole transport layer of OLEDs. Single-crystal analysis of Cz3PhI and Cz3PzI established interesting structural features including twisted geometries, which may help attain high triplet energy. Finally, the importance of theoretical predictions was established by fabricating two solution-process green phosphorescent OLED devices using TPA3CzI and Cz3PzI as HTMs. The fabricated devices exhibited good EQE/PE and CE of ∼15%/56 lm/W/58 cd/A and ∼13%/47 lm/W/50 cd/A, respectively, at 100 cd/m2.

5.
Chemistry ; 30(23): e202304333, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38373190

RESUMO

This study presents a comparative analysis of S-annulated perylene tetraester (PTE-S) and its sulfone (PTE-SO2) analogue. This sulfone modification reduced melting point and stabilized a room temperature columnar rectangular (Colr) phase in contrast to its parent PTE-S which showed a crystalline behaviour at room temperature. This molecular design also leads to red-shifted absorbance and emission in comparison to PTE-S, along with a tuning of photoluminescence from sky blue to green, achieving an impressive quantum yield of 85 %. OLED devices fabricated using PTE-SO2 as emitter material at concentrations of 0.2, 0.5, and 1 wt.% in CBP as host material. A maximum external quantum efficiency (EQE) of 2.9 % was observed with the 0.5 wt.% PTE-SO2 in CBP with CIE coordinates of (0.45, 0.35), accompanied by an orange luminance of 848 cd/m2. Notably, a device with a 0.5 wt% doping concentration of PTE-S demonstrates an EQE of 3.5 %, and cyan luminance of 2,598 cd/m2.

6.
Nanomaterials (Basel) ; 14(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38251111

RESUMO

This paper delves into the development of a group of twisted donor-acceptor-donor (D-A-D) derivatives incorporating bicarbazole as electron donor and benzophenone as electron acceptor for potential use as blue emitters in OLEDs. The derivatives were synthesized in a reaction of 4,4'-difluorobenzophenone with various 9-alkyl-9'H-3,3'-bicarbazoles. The materials, namely, DB14, DB23, and DB29, were designed with different alkyl side chains to enhance their solubility and film-forming properties of layers formed using the spin-coating from solution method. The new materials demonstrate high thermal stabilities with decomposition temperatures >383 °C, glass transition temperatures in the range of 95-145 °C, high blue photoluminescence quantum yields (>52%), and short decay times, which range in nanoseconds. Due to their characteristics, the derivatives were used as blue emitters in OLED devices. Some of the OLEDs incorporating the DB23 emitter demonstrated a high external quantum efficiency (EQEmax) of 5.3%, which is very similar to the theoretical limit of the first-generation devices.

7.
Nanomaterials (Basel) ; 13(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37764550

RESUMO

Organic light-emitting diodes (OLEDs) have outperformed conventional display technologies in smartphones, smartwatches, tablets, and televisions while gradually growing to cover a sizable fraction of the solid-state lighting industry. Blue emission is a crucial chromatic component for realizing high-quality red, green, blue, and yellow (RGBY) and RGB white display technologies and solid-state lighting sources. For consumer products with desirable lifetimes and efficiency, deep blue emissions with much higher power efficiency and operation time are necessary prerequisites. This article reviews over 700 papers covering various factors, namely, the crucial role of blue emission for full-color displays and solid-state lighting, the performance status of blue OLEDs, and the systematic development of fluorescent, phosphorescent, and thermally activated delayed fluorescence blue emitters. In addition, various challenges concerning deep blue efficiency, lifetime, and approaches to realizing deeper blue emission and higher efficacy for blue OLED devices are also described.

8.
Molecules ; 28(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37630279

RESUMO

Organic light-emitting diodes (OLEDs) have revolutionized the world of technology, making significant contributions to enhancing our everyday lives. With their exceptional display and lighting capabilities, OLEDs have become indispensable in various industries such as smartphones, tablets, televisions, and automotives. They have emerged as a dominant technology, inspiring continuous advancements, and improvements. Taking inspiration from the remarkable advancements in OLED advancements, we have successfully developed naphtalimide-based compounds, namely RB-08, RB-09, RB-10, and RB-11. These compounds exhibit desirable characteristics such as a wide bandgap, high decomposition temperatures (306-366 °C), and very high glass transition temperatures (133-179 °C). Leveraging these exceptional properties, we have harnessed these compounds as green emitters in the aforementioned devices. Among the various fabricated OLEDs, the one incorporating the RB-11 emitter has exhibited superior performance. This specific configuration achieved maximum power efficacy of 7.7 lm/W, current efficacy of 7.9 cd/A, and external quantum efficiency of 3.3%. These results highlight the outstanding capabilities of our synthesized emitter and its potential for further advancements in the field.

9.
Phys Chem Chem Phys ; 25(29): 19648-19659, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37435981

RESUMO

The advancement in developing highly efficient hole transport materials for OLED devices has been a challenge over the past several years. For an efficient OLED device, there should be an efficient promotion of charge carriers from each electrode and effective confinement of triplet excitons in the emissive layer of the phosphorescent OLED (PhOLED). Thus, the development of stable and high triplet energy hole transport materials is in urgent demand for high-performing PhOLED devices. The present work demonstrates the development of two hetero-arylated pyridines as high triplet energy (2.74-2.92 eV) multifunctional hole transport materials to reduce the exciton quenching and to enhance the extent of charge carrier recombination in the emissive layer. In this regard, we report the design, synthesis, and theoretical modeling with electro-optical properties of two molecules, namely PrPzPy and MePzCzPy, with suitable HOMO/LUMO energy levels and high triplet energy, by incorporating phenothiazine as well as other donating units into a pyridine scaffold, and finally developing a hybrid phenothiazine-carbazole-pyridine based molecular architecture. The natural transition orbital (NTO) calculations were done to analyze the excited state sensation in these molecules. The long-range charge transfer characteristics between the higher singlet and triplet states were also analyzed. The reorganization energy of each molecule was calculated to examine their hole transportability. The theoretical calculations for PrPzPy and MePzCzPy revealed that these two molecular systems could be promising materials for the hole transport layer of OLED devices. As a proof of concept, a solution-processed hole-only device (HOD) of PrPzPy was fabricated. The increase in current density with an increase in operating voltage in the range of ∼3-10 V supported that the suitable HOMO energy of PrPzPy can facilitate the hole transportation from the hole injection layer (HIL) to the emissive layer (EML). These results indicated the promising hole transportability of the present molecular materials.

10.
Heliyon ; 9(5): e15522, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37180913

RESUMO

Projectors have become one major medium in modern teaching, with large area-size displays emerging as an alternative. What concerns the general public is whether such eLearning would impose threat on eyes, by noting blue enriched white light to be hazardous to retina and else. Especially, little was known about their permissible viewing time under a certain viewing clarity. We had hence carried out a quantitative study with the use of a blue-hazard quantification spectrometer to determine the permissible viewing time when using a projector and a large size TV screen for displaying. Surprisingly, the large TV screen could permit a much longer viewing time, meaning which is more eye-friendly. It is plausibly because its resolution is much higher than that of the projector. Two dilemmas were observed in such eLearning; those sitting in the front would suffer a much higher illuminance, leading to a much shorter viewing time, while those sitting in the back would need a far much larger font size to see clearly. To ensure both viewing clarity and a sufficiently long permissible viewing time, orange text on black background is suggested to replace the defaulted black text on white background. The permissible viewing time could hence drastically increase from 1.3 to 83 h at 2 m by viewing a 30 pt font for the TV and from 0.4 to 54 h for the projection. At 6 m, the permissible viewing time was increased from 12 to 236 h for the TV and from 3 to 160 h for the projection, based on a viewable 94 pt font. These results may help educators and other e-display users to wisely apply the display tools with safety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA