Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995175

RESUMO

The role of ICOS in antitumor T cell responses and overall tumor progression has been controversial. In this study, we compared tumor progression in mice lacking ICOS selectively in regulatory T (Treg) cells or in all T cells. Using an experimental melanoma lung metastasis model, we found that Treg cell-specific ICOS knockout reduces the overall tumor burden compared with Cre control mice, with increased CD4+-to-Treg cell and CD8+-to-Treg cell ratios in the tumor. In contrast, there was no difference in the tumor burden in mice lacking ICOS in all of the T cell compartments. This suggests a dual role of ICOS costimulation in promoting protumor and antitumor T cell responses. Consistent with reduced tumor burden, we found that Treg cell-specific deletion of ICOS leads to an increase of CD8+ CTLs that express high levels of granzyme B and perforin. Moreover, single-cell transcriptome analysis revealed an increase of Ly108+Eomeshi CD8+ T cells at the cost of the Ly108+T-bethi subset in Treg cell-specific knockout mice. These results suggest that ICOS-expressing Treg cells suppress the CTL maturation process at the level of Eomes upregulation, a critical step known to drive perforin expression and cytotoxicity. Collectively, our data imply that cancer immunotherapies using ICOS agonist Abs may work better in Treg cell-low tumors or when they are combined with regimens that deplete tumor-infiltrating Treg cells.

2.
Cell Rep ; 42(5): 112438, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37126449

RESUMO

Embryonic stem cells (ESCs) are an attractive model to study the relationship between signaling and cell fates. Cultured mouse ESCs can exist in multiple states resembling distinct stages of early embryogenesis, such as totipotent, pluripotent, primed, and primitive endoderm. The signaling mechanisms regulating the totipotent state and coexistence of these states are poorly understood. Here we identify bone morphogenetic protein (BMP) signaling as an inducer of the totipotent state. However, we discover that BMP's role is constrained by the cross-activation of FGF, NODAL, and WNT pathways. We exploit this finding to enhance the proportion of totipotent cells by rationally inhibiting the cross-activated pathways. Single-cell mRNA sequencing reveals that induction of the totipotent state is accompanied by suppression of primed and primitive endoderm states. Furthermore, reprogrammed totipotent cells we generate in culture resemble totipotent cells of preimplantation embryo. Our findings reveal a BMP signaling mechanism regulating both the totipotent state and heterogeneity of ESCs.


Assuntos
Células-Tronco Embrionárias Murinas , Via de Sinalização Wnt , Animais , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Via de Sinalização Wnt/fisiologia , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Fator de Crescimento Transformador beta/metabolismo
3.
Cancers (Basel) ; 14(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36428689

RESUMO

Pancreatic cancer (pancreatic ductal adenocarcinoma: PDAC) is one of the most aggressive neoplastic diseases. Metformin use has been associated with reduced pancreatic cancer incidence and better survival in diabetics. Metformin has been shown to inhibit PDAC cells growth and survival, both in vitro and in vivo. However, clinical trials using metformin have failed to reduce pancreatic cancer progression in patients, raising important questions about molecular mechanisms that protect tumor cells from the antineoplastic activities of metformin. We confirmed that metformin acts through inhibition of mitochondrial complex I, decreasing the NAD+/NADH ratio, and that NAD+/NADH homeostasis determines metformin sensitivity in several cancer cell lines. Metabolites that can restore the NAD+/NADH ratio caused PDAC cells to be resistant to metformin. In addition, metformin treatment of PDAC cell lines induced a compensatory NAMPT expression, increasing the pool of cellular NAD+. The NAMPT inhibitor FK866 sensitized PDAC cells to the antiproliferative effects of metformin in vitro and decreased the cellular NAD+ pool. Intriguingly, FK866 combined with metformin increased survival in mice bearing KP4 cell line xenografts, but not in mice with PANC-1 cell line xenografts. Transcriptome analysis revealed that the drug combination reactivated genes in the p53 pathway and oxidative stress, providing new insights about the mechanisms leading to cancer cell death.

4.
Methods ; 208: 9-18, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36229002

RESUMO

Cellular heterogeneity is fundamental to both developmental differentiation and disease establishment. Recent advances in high-throughput single-cell technology have been rapidly revolutionizing the resolution of our understanding of development and disease. However, while the study of single-cell transcriptomes is easily accessible, the analysis of single-cell proteomes is still in its infancy. In this study, we describe simultaneous profiling of multiple regulatory proteins at a single-cell level using mass cytometry or cytometry by time of flight. We develop mass cytometry reagents to study key transcription factors, signaling proteins and chromatin modifiers that regulate mouse embryonic stem cells. Our data reveal that the protein level of stem cell regulators significantly varies and that cell signaling pathways are extensively cross-activated across defined culture conditions of embryonic stem cells. In addition, the mass cytometry data enabled us to identify distinct multiple cell states of embryonic stem cells and determine their variation across culture conditions. We discuss the mass cytometry method, our results of the multi-protein analysis in embryonic stem cells and potential future perspectives for single-cell protein analysis.


Assuntos
Células-Tronco Pluripotentes , Animais , Camundongos , Células-Tronco Embrionárias , Análise de Célula Única/métodos , Diferenciação Celular/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Citometria de Fluxo/métodos
5.
J Exp Med ; 219(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35938990

RESUMO

Enteric helminths form intimate physical connections with the intestinal epithelium, yet their ability to directly alter epithelial stem cell fate has not been resolved. Here we demonstrate that infection of mice with the parasite Heligmosomoides polygyrus bakeri (Hpb) reprograms the intestinal epithelium into a fetal-like state marked by the emergence of Clusterin-expressing revival stem cells (revSCs). Organoid-based studies using parasite-derived excretory-secretory products reveal that Hpb-mediated revSC generation occurs independently of host-derived immune signals and inhibits type 2 cytokine-driven differentiation of secretory epithelial lineages that promote their expulsion. Reciprocally, type 2 cytokine signals limit revSC differentiation and, consequently, Hpb fitness, indicating that helminths compete with their host for control of the intestinal stem cell compartment to promote continuation of their life cycle.


Assuntos
Nematospiroides dubius , Infecções por Strongylida , Animais , Citocinas , Mucosa Intestinal , Intestinos , Camundongos , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...