Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834719

RESUMO

An investigation of austenite grain growth (AGG) during the isothermal heat treatment of low-alloy steel is conducted. The goal is to uncover the effect of time, temperature, and initial grain size on SA508-III steel grain growth. Understanding this relationship enables the optimization of the time and temperature of the heat treatment to achieve the desired grain size in the studied steel. A modified Arrhenius model is used to model austenite grain size (AGS) growth distributions. With this model, it is possible to predict how grain size will change depending on heat treatment conditions. Then, the generalized reduced gradient (GRG) optimization method is employed under adiabatic conditions to characterize the model's parameters, providing a more precise solution than traditional methods. With optimal model parameters, predicted AGS agree well with measured values. The model shows that AGS increases faster as temperature and time increase. Similarly, grain size grows directly in proportion to the initial grain size. The optimized parameters are then applied to a practical case study with a similar specimen size and material properties, demonstrating that our approach can efficiently and accurately predict AGS growth via GRG optimization.

2.
Materials (Basel) ; 15(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500158

RESUMO

The flow behaviors of metallic materials are sensitive to state variables, including strain, strain rate, and temperature. In particular, the temperature effect on the flow behavior is of great importance. The flow information is usually obtained at the sample strain rates and temperatures from the hot cylinder compression test. However, this test is inevitably exposed to undesirable effects of friction and temperature on flow characterization. This study reveals their impact on the flow curve of an A6082 alloy. The unique features of its flow behavior and the inaccuracy of as-received, primitive flow information are emphasized. Using a systematic way of correcting the friction and temperature effects, the flow curves with high accuracy in terms of the compression load-stroke curve obtained from the test are calculated. It was revealed that the both the friction and temperature compensation of the primitive flow curves bring a minor change in the flow curves of the A6082 alloy, which is quite different from other commercial light metals. This phenomenon caused by the unique features of the flow behavior of the A6082 or other aluminum alloys will be critical to solving various process and quality matters confronted by the engineers in the hot metal forming industry.

3.
Materials (Basel) ; 15(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35454440

RESUMO

We focus on the importance of accurately describing the flow behaviors of metallic materials to be cold formed; we refer to several valuable examples. We review the typical experimental methods by which flow curves are obtained, in addition to several combined experimental-numerical methods. The characteristics of four fundamental flow models including the Ludwik, Voce, Hollomon, and Swift models are explored in detail. We classify all flow models in the literature into three groups, including the Ludwik and Voce families, and blends thereof. We review the experimental and numerical methods used to optimize the flow curves. Representative flow models are compared via tensile testing, with a focus on the necking point and pre- or post-necking strain hardening. Several closed-form function models employed for the non-isothermal analyses of cold metal forming are also examined. The traditional bilinear C-m model and derivatives thereof are used to describe the complicated flow behaviors of metallic materials at cold forming temperatures, particularly in terms of their applications to metal forming simulations and process optimization.

4.
Materials (Basel) ; 15(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35407684

RESUMO

Traditional fatigue fracture theory and practice focus principally on structural design. It is thus too conservative and inappropriate when used to predict the high-cycle fatigue life of dies used for metal forming, especially cold forging. We propose a novel mean stress correction model and diagram to predict the high-cycle fatigue lives of cold forging dies, which focuses on the upper part of the equivalent fatigue strength curve. Considering the features of die materials characterized by high yield strength and low ductility, a straight line is assumed for the tensile yield line. To the contrary, a general curve is used to represent the fatigue strength. They are interpolated, based on the distance ratio, when finding an appropriate equivalent fatigue strength curve at the mean stress and stress amplitude between the line and curve. The approach is applied to a well-defined literature example to verify its validity and shed light on the characteristics of die fatigue life. The approach is also applied to practical forging and useful qualitative results are obtained.

5.
Materials (Basel) ; 14(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500966

RESUMO

We develop a new flow model based on the Swift method, which is both versatile and accurate when used to describe flow stress in terms of strain hardening and damage softening. A practical issue associated with flow stress at room temperature is discussed in terms of tensile testing of a cylindrical specimen; we deal with both material identification and finite element predictions. The flow model has four major components, namely the stress before, at, and after the necking point and around fracture point. The Swift model has the drawback that not all major points of stress can be covered simultaneously. A term of strain to the third or fourth power (the "second strain hardening exponent"), multiplied and thus controlled by a second strain hardening parameter, can be neglected at small strains. Any effect of the second strain hardening exponent on the identification of the necking point is thus negligible. We use this term to enhance the flexibility and accuracy of our new flow model, which naturally couples flow stress with damage using the same hardening constant as a function of damage. The hardening constant becomes negative when damage exceeds a critical value that causes a drastic drop in flow stress.

6.
Materials (Basel) ; 14(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805188

RESUMO

The traditional theory of ductile fracture has limitations for predicting crack generation during a cold shell nosing process. Various damage criteria are employed to explain fracture and failure in the nose part of a cold shell. In this study, differences in microstructure among fractured materials and analysis of their surfaces indicated the occurrence of brittle fractures. The degree of "plastic deformation-induced embrittlement" (PDIE) of plastically deformable materials affects the likelihood of brittle fractures; PDIE can also decrease the strength in tension due to the Bauschinger effect. Two indicators of brittle fracture are presented, i.e., the critical value of PDIE and the allowable tensile strength (which in turn depends on the degree of PDIE or embrittlement-effective strain). When the maximum principal stress is greater than the latter and the PDIE is greater than the former, our method determines the likelihood of brittle fracture. This approach was applied to an actual cold shell nosing process, and the predictions were in good quantitative agreement with the experimental results.

7.
Materials (Basel) ; 13(22)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238527

RESUMO

SUS304 stainless steel is characterized by combined tensile and compression testing, with an emphasis on flow stress at higher strain and temperature. The plastic deformation behavior of SUS304 from room temperature to 400 °C is examined and a general approach is used to express flow stress as a closed-form function of strain, strain rate, and temperature; this is optimal when the strain is high, especially during automatic multi-stage cold forging. The fitted flow stress is subjected to elastothermoviscoplastic finite element analysis (FEA) of an automatic multi-stage cold forging process for an SUS304 ball-stud. The importance of the thermal effect during cold forging, in terms of high material strength and good strain-hardening, is revealed by comparing the forming load, die wear and die stress predictions of non-isothermal and isothermal FEAs. The experiments have shown that the predictions of isothermal FEA are not feasible because of the high predicted effective stress on the weakest part of the die.

8.
Arch Orthop Trauma Surg ; 122(2): 88-92, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11880908

RESUMO

A three-dimensional finite element model of a femoral head was developed using a surface modeling technique. The distribution of the stress index S (S = effective stress / yield strength, sigma/sigmaY) in various sizes of segmental osteonecrosis was assessed. The stress index of the femoral head was within physiological limits when the necrotic angle was less than 110 degrees. Within both the subchondral region and the deep necrotic region adjacent to the necrotic-viable interface, values of the stress index significantly higher than the normal physiological level (>0.1) appeared when the necrotic angle was 110 degrees or more. In the analysis of 28 osteonecrotic femoral head specimens, fracture appeared in two major locations: the deep necrotic region near the underlying necrotic-viable interface (19 femoral heads) and the subchondral region (7 femoral heads). In 2 femoral heads, the fracture involved both regions. Both sites of fracture coincided with the region of stress index greater than 0.1 in the finite element model study. These results may provide baseline information for predicting the collapse of the femoral head and determining the treatment modality of early stage osteonecrosis.


Assuntos
Fraturas do Colo Femoral/fisiopatologia , Necrose da Cabeça do Fêmur/fisiopatologia , Fenômenos Biomecânicos , Simulação por Computador , Fraturas do Colo Femoral/cirurgia , Necrose da Cabeça do Fêmur/cirurgia , Fixação de Fratura/métodos , Humanos , Modelos Anatômicos , Valor Preditivo dos Testes , Medição de Risco , Sensibilidade e Especificidade , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...