Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4728, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550308

RESUMO

Nanographene materials are promising building blocks for the growing field of low-dimensional materials for optics, electronics and biophotonics applications. In particular, bottom-up synthesized 0D graphene quantum dots show great potential as single quantum emitters. To fully exploit their exciting properties, the graphene quantum dots must be of high purity; the key parameter for efficient purification being the solubility of the starting materials. Here, we report the synthesis of a family of highly soluble and easily processable rod-shaped graphene quantum dots with fluorescence quantum yields up to 94%. This is uncommon for a red emission. The high solubility is directly related to the design of the structure, allowing for an accurate description of the photophysical properties of the graphene quantum dots both in solution and at the single molecule level. These photophysical properties were fully predicted by quantum-chemical calculations.

2.
Nanomaterials (Basel) ; 12(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269261

RESUMO

The trapping of coronene and zinc phthalocyanine (ZnPc) molecules at low concentration by a two-dimensional self-assembled nanoarchitecture of a push-pull dye is investigated using scanning tunneling microscopy (STM) at the liquid-solid interface. The push-pull molecules adopt an L-shaped conformation and self-assemble on a graphite surface into a hydrogen-bonded Kagomé network with porous hexagonal cavities. This porous host-structure is used to trap coronene and ZnPc guest molecules. STM images reveal that only 11% of the Kagomé network cavities are filled with coronene molecules. In addition, these guest molecules are not locked in the host-network and are desorbing from the surface. In contrast, STM results reveal that the occupancy of the Kagomé cavities by ZnPc evolves linearly with time until 95% are occupied and that the host structure cavities are all occupied after few hours.

3.
Anal Chem ; 94(3): 1697-1704, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35020356

RESUMO

In this article, we set up a methodology to investigate the relationship between the catalytic activity and the agglomeration state of platinum group metal-free ORR catalysts. To this end, we have developed a statistical approach based on scanning electrochemical microscopy (SECM) and atomic force microscopy (AFM). Two catalysts are investigated at very low loadings in order to access their intrinsic activity. Differences in terms of dispersion, stability of the inks, and adherence on the substrate are observed, highlighting the importance of measuring the exact amount and agglomeration state of the materials under study. The agglomeration state of the deposits measured by AFM explains the differences in activity measured by SECM. The performances of the catalysts are compared, and the contributions of the intrinsic activity and the agglomeration state are identified. This work paves the way toward various applications ranging from the benchmarking of new catalysts to the optimization of an ink formulation, for ORR and beyond.

5.
Photochem Photobiol Sci ; 20(10): 1257-1271, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34542893

RESUMO

We present a study of the excited state relaxation dynamics of the photosensitizer P1 used in p-type dye-sensitized solar cells. Comparative femtosecond fluorescence upconversion measurements in solution and in films show that the dye undergoes a picosecond electronic relaxation from the bright Franck-Condon (FC) state to a low-emitting charge-transfer (CT) state in polar environment. The fluorescence is moderately quenched in solution and on the mesoporous Al2O3 isolator but dramatically more on NiO semiconductor. We assign this sub-picosecond process to the hole injection thus confirming that the electron transfer is from the FC state directly into the NiO valence band.

6.
ACS Nano ; 15(8): 13504-13515, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34383485

RESUMO

Water electrolysis powered by renewable energies is a promising technology to produce sustainable fossil free fuels. The development and evaluation of effective catalysts are here imperative; however, due to the inclusion of elements with different redox properties and reactivity, these materials undergo dynamical changes and phase transformations during the reaction conditions. NiMoO4 is currently investigated among other metal oxides as a promising noble metal free catalyst for the oxygen evolution reaction. Here we show that at applied bias, NiMoO4·H2O transforms into γ-NiOOH. Time resolved operando Raman spectroscopy is utilized to follow the potential dependent phase transformation and is collaborated with elemental analysis of the electrolyte, confirming that molybdenum leaches out from the as-synthesized NiMoO4·H2O. Molybdenum leaching increases the surface coverage of exposed nickel sites, and this in combination with the formation of γ-NiOOH enlarges the amount of active sites of the catalyst, leading to high current densities. Additionally, we discovered different NiMoO4 nanostructures, nanoflowers, and nanorods, for which the relative ratio can be influenced by the heating ramp during the synthesis. With selective molybdenum etching we were able to assign the varying X-ray diffraction (XRD) pattern as well as Raman vibrations unambiguously to the two nanostructures, which were revealed to exhibit different stabilities in alkaline media by time-resolved in situ and operando Raman spectroscopy. We advocate that a similar approach can beneficially be applied to many other catalysts, unveiling their structural integrity, characterize the dynamic surface reformulation, and resolve any ambiguities in interpretations of the active catalyst phase.

7.
J Phys Chem Lett ; 10(17): 5076-5081, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31409074

RESUMO

There is a growing consensus that the charge separation taking place in dye-sensitized solar cells is a multiscale process occurring on a times scale from a few to hundreds of picoseconds. We studied the excited-state dynamics of the robust and efficient push-pull dye RK1 in solution, on mesoporous films and in complete photovoltaics cells by femtosecond fluorescence upconversion and transient absorption. In a polar environment and cells, the dynamics at early times are dominated by an intramolecular electronic relaxation, while electron injection is predominant on thin films only. In cells, the electron injection process becomes visible at a later stage, from tens to hundreds of picoseconds. Our study shows that it is crucial to record and analyze full time-resolved fluorescence spectra in order to obtain wavelength-independent dynamics and get a correct description of the nature and the population of the excited state.

8.
J Am Chem Soc ; 141(24): 9593-9602, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31135147

RESUMO

A push-pull organic dye and a cobaloxime catalyst were successfully cografted on NiO and CuGaO2 to form efficient molecular photocathodes for H2 production with >80% Faradaic efficiency. CuGaO2 is emerging as a more effective p-type semiconductor in photoelectrochemical cells and yields a photocathode with 4-fold higher photocurrent densities and 400 mV more positive onset photocurrent potential compared to the one based on NiO. Such an optimized CuGaO2 photocathode was combined with a TaON|CoO x photoanode in a photoelectrochemical cell. Operated in this Z-scheme configuration, the two photoelectrodes produced H2 and O2 from water with 87% and 88% Faradaic efficiency, respectively, at pH 7 under visible light and in the absence of an applied bias, equating to a solar to hydrogen conversion efficiency of 5.4 × 10-3%. This is, to the best of our knowledge, the highest efficiency reported so far for a molecular-based noble metal-free water splitting Z-scheme.

9.
RSC Adv ; 9(42): 24043-24049, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35527897

RESUMO

In this work, a multifunctional non-toxic chromium free treatment is proposed. Hexavalent chromium, largely used for anticorrosion surface treatments of aluminum alloys in aeronautics, will soon be completely banned due to its high toxicity (European REACH regulation) and new solutions are required. Here, in a first step, a polymeric film was grafted at the aluminum surface by the surface induced reduction of a diazonium salt. In a second step, the grafted surface was submitted to an anodization treatment, forming a thick aluminum oxide layer protecting the underlying metal against corrosion. No change in the organic coating was detected after the second step of the process. This leads to a multilayer coating, which provides competitive results regarding both the adhesion of paint and corrosion protection.

10.
Chem Sci ; 9(32): 6721-6738, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30310606

RESUMO

Dye-sensitized photo-electrochemical cells (DS-PECs) form an emerging technology for the large-scale storage of solar energy in the form of (solar) fuels because of the low cost and ease of processing of their constitutive photoelectrode materials. Preparing such molecular photocathodes requires a well-controlled co-immobilization of molecular dyes and catalysts onto transparent semiconducting materials. Here we used a series of surface analysis techniques to describe the molecular assembly of a push-pull organic dye and a cobalt diimine-dioxime catalyst co-grafted on a p-type NiO electrode substrate. (Photo)electrochemical measurements allowed characterization of electron transfer processes within such an assembly and to demonstrate for the first time that a CoI species is formed as the entry into the light-driven H2 evolution mechanism of a dye-sensitized photocathode. This co-grafted noble-metal free H2-evolving photocathode architecture displays similar performances to its covalent dye-catalyst counterpart based on the same catalytic moiety. Post-operando time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of these photoelectrodes after extensive photoelectrochemical operation suggested decomposition pathways of the dye and triazole linkage used to graft the catalyst onto NiO, providing grounds for the design of optimized molecular DS-PEC components with increased robustness upon turnover.

11.
J Phys Chem A ; 122(25): 5533-5544, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29856624

RESUMO

There is a high interest in the development of new push-pull dyes for the use in dye sensitized solar cells. The pronounced charge transfer character of the directly photoexcited state is in principle favorable for a charge injection. Here, we report a time-resolved fluorescence study of a triphenylamine-bithiophene-naphthalimide dye in four solvents of varying polarity using fluorescence upconversion. The recording of femtosecond time-resolved fluorescence spectra corrected for the group velocity dispersion allows for a detailed analysis discriminating between spectral shifts and total intensity decays. After photoexcitation, the directly populated state (S1/FC) evolves toward a relaxed charge transfer state (S1/CT). This S1/CT state is characterized by a lower radiative transition moment and a higher nonradiative quenching. The fast dynamic shift of the fluorescence band is well described by solvation dynamics in polar solvents, but less so in nonpolar solvents, hinting that the excited-state relaxation process occurs on a free energy surface whose topology is strongly governed by the solvent polarity. This study underlines the influence of the environment on the intramolecular charge transfer (ICT) process, and the necessity to analyze time-resolved data in detail when solvation and ICT occur simultaneously.

12.
Chemphyschem ; 18(19): 2777-2781, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28771994

RESUMO

The amazing properties of 2D materials are envisioned to revolutionize several domains such as flexible electronics, electrocatalysis, or biosensing. Herein we introduce scanning electrochemical microscopy (SECM) as a tool to investigate molybdenum disulfide in a straightforward fashion, providing localized information regarding the electronic transport within chemical vapor deposition (CVD)-grown crystalline MoS2 single layers having micrometric sizes. Our investigations show that within flakes assemblies some flakes are well electrically interconnected, with no detectable contact resistance, whereas others are not electrically connected at all, independent of the size of the physical contact between them. Overall, the work shows how the complex electronic behavior of MoS2 flake assemblies (semiconducting nature, contact quality between flakes) can be investigated with SECM.

13.
Sci Rep ; 6: 31932, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27601088

RESUMO

Multiple modern applications of electronics call for inexpensive chips that can perform complex operations on natural data with limited energy. A vision for accomplishing this is implementing hardware neural networks, which fuse computation and memory, with low cost organic electronics. A challenge, however, is the implementation of synapses (analog memories) composed of such materials. In this work, we introduce robust, fastly programmable, nonvolatile organic memristive nanodevices based on electrografted redox complexes that implement synapses thanks to a wide range of accessible intermediate conductivity states. We demonstrate experimentally an elementary neural network, capable of learning functions, which combines four pairs of organic memristors as synapses and conventional electronics as neurons. Our architecture is highly resilient to issues caused by imperfect devices. It tolerates inter-device variability and an adaptable learning rule offers immunity against asymmetries in device switching. Highly compliant with conventional fabrication processes, the system can be extended to larger computing systems capable of complex cognitive tasks, as demonstrated in complementary simulations.

14.
Langmuir ; 31(49): 13420-5, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26624809

RESUMO

The conformation and the two-dimensional self-assembly of 4'-(3',4″-dihexyloxy-5,2':5',2″:5″,2‴-quaterthien-2,5‴-diyl)-bis(2,2':6',2″-terpyridine) molecules are theoretically and experimentally investigated. This molecular building block forms a hydrogen-bonded chiral supramolecular nanoarchitecture on graphite at the solid/liquid interface. Scanning tunneling microscopy (STM) shows that the molecule adopts an S-shaped conformation in this structure. DFTB+ calculations reveal that this conformation is not the lowest-energy conformation. The molecular nanoarchitecture appears to be stabilized by hydrogen bonding as well as van der Waals interactions. I-, L-, and D-shaped molecular conformations are, however, locally observed at the domain boundary, but these conformations do not self-assemble into organized 2D structures.

15.
ACS Appl Mater Interfaces ; 7(30): 16395-403, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26151685

RESUMO

Organic semiconductors have great potential for producing hydrogen in a durable and economically viable manner because they rely on readily available materials and can be solution-processed over large areas. With the objective of building efficient hybrid organic-inorganic photoelectrochemical cells, we combined a noble-metal-free and solution-processable catalyst for proton reduction, MoS3, and a poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk heterojunction (BHJ). Different interfacial layers were investigated to improve the charge transfer between P3HT:PCBM and MoS3. Metallic Al/Ti interfacial layers led to an increase of the photocurrent by up to 8 mA cm(-2) at reversible hydrogen electrode (RHE) potential with a 0.6 V anodic shift of the H2 evolution reaction onset potential, a value close to the open-circuit potential of the P3HT:PCBM solar cell. A 50-nm-thick C60 layer also works as an interfacial layer, with a current density reaching 1 mA cm(-2) at the RHE potential. Moreover, two recently highlighted1 figures-of-merit, measuring the ratio of power saved, Φsaved,ideal and Φsaved,NPAC, were evaluated and discussed to compare the performances of various photocathodes assessed in a three-electrode configuration. Φsaved,ideal and Φsaved,NPAC use the RHE and a nonphotoactive electrode with an identical catalyst as the dark electrode, respectively. They provide different information especially for differentiation of the roles of the photogenerating layer and catalyst. The best results were obtained with the Al/Ti metallic interlayer, with Φsaved,ideal and Φsaved,NPAC reaching 0.64% and 2.05%, respectively.

16.
J Am Chem Soc ; 136(17): 6348-54, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24717022

RESUMO

The development of innovative techniques for the functionalization of carbon nanotubes that preserve their exceptional quality, while robustly enriching their properties, is a central issue for their integration in applications. In this work, we describe the formation of a covalent network of porphyrins around MWNT surfaces. The approach is based on the adsorption of cobalt(II) meso-tetraethynylporphyrins on the nanotube sidewalls followed by the dimerization of the triple bonds via Hay-coupling; during the reaction, the nanotube acts as a template for the formation of the polymeric layer. The material shows an increased stability resulting from the cooperative effect of the multiple π-stacking interactions between the porphyrins and the nanotube and by the covalent links between the porphyrins. The nanotube hybrids were fully characterized and tested as the supported catalyst for the oxygen reduction reaction (ORR) in a series of electrochemical measurements under acidic conditions. Compared to similar systems in which monomeric porphyrins are simply physisorbed, MWNT-CoP hybrids showed a higher ORR activity associated with a number of exchanged electrons close to four, corresponding to the complete reduction of oxygen into water.

17.
J Am Chem Soc ; 136(13): 4833-6, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24628490

RESUMO

Herein, we describe a new localized functionalization method of graphene oxide (GO) deposited on a silicon oxide surface. The functionalization starts with the reduction of GO by electrogenerated naphthalene radical anions. The source of reducers is a microelectrode moving close to the substrate in a typical scanning electrochemical microscopy (SECM) configuration. Then, the recovery of electronic conductivity upon reduction enables the selective electrochemical functionalization of the patterns. The illustrative example is the electrografting of reduced-GO with a diazonium salt bearing a protonated amino group that can further immobilize gold nanoparticles by simple immersion. This study opens new routes for the construction of multifunctional patterned surfaces.

18.
J Phys Chem Lett ; 5(23): 4162-6, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26278948

RESUMO

The present work investigates the electronic conduction of reduced graphene oxide flakes and the coupling between flakes through a combined SECM (scanning electrochemical microscopy), AFM, and SEM analysis. Images of individual and interconnected flakes directly reveal the signature of the contact resistance between flakes in a noncontact and substrate-independent way. Quantitative evaluation of the parameters is achieved with the support of numerical simulations to interpret the experimental results. The interflakes contact resistance importantly impacts the transport of electrons, which can be anticipated as a key parameter in r-GO-based materials used in fuel cells, lithium batteries, supercapacitors, and organic electronic devices.

19.
Top Curr Chem ; 348: 95-126, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23756847

RESUMO

This chapter aims to present recent examples of supramolecular functionalization of carbon nanotubes. The non-covalent functionalization appears as a solution for the future applications in nanotechnologies since it allows the functionalization and manipulation of nanotubes without the introduction of sp (3) defects in the π-conjugated system. Thus, the optical and electronic properties of the nanotubes remain preserved. In the first part of this chapter, we present the use of surfactant for the dispersion of nanotubes and its application for sorting. Then we report several examples of functionalization of nanotubes based on π-stacking interactions with pyrene derivatives. Finally, in the last part we review the wrapping of photo/electroactive polymers around the nanotube sidewalls. We put a particular focus on polyflurorene-based polymers and we show their utilization for the separation of nanotubes in diameter and chirality.

20.
Chemistry ; 19(34): 11374-81, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23832804

RESUMO

Herein the synthesis, characterization, and organization of a first-generation dendritic fulleropyrrolidine bearing two pending porphyrins are reported. Both the dendron and the fullerene derivatives were synthesized by Cu(I) -catalyzed alkyne-azide cycloaddition (CuAAC). The electron-donor-acceptor conjugate possesses a shape that allows the formation of supramolecular complexes by encapsulation of C60 within the jaws of the two porphyrins of another molecule. The interactions between the two photoactive units (i.e., C60 and Zn-porphyrin) were confirmed by cyclic voltammetry as well as by steady-state and time-resolved spectroscopy. For example, a shift of about 85 mV was found for the first reduction of C60 in the electron-donor-acceptor conjugate compared with the parent molecules, which indicates that C60 is included in the jaws of the porphyrin. The fulleropyrrolidine compound exhibits a rich polymorphism, which was corroborated by AFM and SEM. In particular, it was found to form supramolecular fibrils when deposited on substrates. The morphology of the fibrils suggests that they are formed by several rows of fullerene-porphyrin complexes.


Assuntos
Fulerenos/química , Metaloporfirinas/química , Química Click , Reação de Cicloadição , Técnicas Eletroquímicas , Nanoestruturas/química , Polímeros/síntese química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...