Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3601, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684654

RESUMO

Molybdenum disulfide (MoS2) is widely regarded as a competitive hydrogen evolution reaction (HER) catalyst to replace platinum in proton exchange membrane water electrolysers (PEMWEs). Despite the extensive knowledge of its HER activity, stability insights under HER operation are scarce. This is paramount to ensure long-term operation of Pt-free PEMWEs, and gain full understanding on the electrocatalytically-induced processes responsible for HER active site generation. The latter are highly dependent on the MoS2 allotropic phase, and still under debate. We rigorously assess these by simultaneously monitoring Mo and S dissolution products using a dedicated scanning flow cell coupled with downstream analytics (ICP-MS), besides an electrochemical mass spectrometry setup for volatile species analysis. We observe that MoS2 stability is allotrope-dependent: lamellar-like MoS2 is highly unstable under open circuit conditions, whereas cluster-like amorphous MoS3-x instability is induced by a severe S loss during the HER and undercoordinated Mo site generation. Guidelines to operate non-noble PEMWEs are therefore provided based on the stability number metrics, and an HER mechanism which accounts for Mo and S dissolution pathways is proposed.

2.
ACS Catal ; 14(4): 2473-2486, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38384942

RESUMO

In the present work, we report on a synergistic relationship between platinum nanoparticles and a titanium oxynitride support (TiOxNy/C) in the context of oxygen reduction reaction (ORR) catalysis. As demonstrated herein, this composite configuration results in significantly improved electrocatalytic activity toward the ORR relative to platinum dispersed on carbon support (Pt/C) at high overpotentials. Specifically, the ORR performance was assessed under an elevated mass transport regime using the modified floating electrode configuration, which enabled us to pursue the reaction closer to PEMFC-relevant current densities. A comprehensive investigation attributes the ORR performance increase to a strong interaction between platinum and the TiOxNy/C support. In particular, according to the generated strain maps obtained via scanning transmission electron microscopy (STEM), the Pt-TiOxNy/C analogue exhibits a more localized strain in Pt nanoparticles in comparison to that in the Pt/C sample. The altered Pt structure could explain the measured ORR activity trend via the d-band theory, which lowers the platinum surface coverage with ORR intermediates. In terms of the Pt particle size effect, our observation presents an anomaly as the Pt-TiOxNy/C analogue, despite having almost two times smaller nanoparticles (2.9 nm) compared to the Pt/C benchmark (4.8 nm), manifests higher specific activity. This provides a promising strategy to further lower the Pt loading and increase the ECSA without sacrificing the catalytic activity under fuel cell-relevant potentials. Apart from the ORR, the platinum-TiOxNy/C interaction is of a sufficient magnitude not to follow the typical particle size effect also in the context of other reactions such as CO stripping, hydrogen oxidation reaction, and water discharge. The trend for the latter is ascribed to the lower oxophilicity of Pt-based on electrochemical surface coverage analysis. Namely, a lower surface coverage with oxygenated species is found for the Pt-TiOxNy/C analogue. Further insights were provided by performing a detailed STEM characterization via the identical location mode (IL-STEM) in particular, via 4DSTEM acquisition. This disclosed that Pt particles are partially encapsulated within a thin layer of TiOxNy origin.

3.
ACS Appl Nano Mater ; 6(12): 10421-10430, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37384128

RESUMO

Aiming at speeding up the discovery and understanding of promising electrocatalysts, a novel experimental platform, i.e., the Nano Lab, is introduced. It is based on state-of-the-art physicochemical characterization and atomic-scale tracking of individual synthesis steps as well as subsequent electrochemical treatments targeting nanostructured composites. This is provided by having the entire experimental setup on a transmission electron microscopy (TEM) grid. Herein, the oxygen evolution reaction nanocomposite electrocatalyst, i.e., iridium nanoparticles dispersed on a high-surface-area TiOxNy support prepared on the Ti TEM grid, is investigated. By combining electrochemical concepts such as anodic oxidation of TEM grids, floating electrode-based electrochemical characterization, and identical location TEM analysis, relevant information from the entire composite's cycle, i.e., from the initial synthesis step to electrochemical operation, can be studied. We reveal that Ir nanoparticles as well as the TiOxNy support undergo dynamic changes during all steps. The most interesting findings made possible by the Nano Lab concept are the formation of Ir single atoms and only a small decrease in the N/O ratio of the TiOxNy-Ir catalyst during the electrochemical treatment. In this way, we show that the precise influence of the nanoscale structure, composition, morphology, and electrocatalyst's locally resolved surface sites can be deciphered on the atomic level. Furthermore, the Nano Lab's experimental setup is compatible with ex situ characterization and other analytical methods, such as Raman spectroscopy, X-ray photoelectron spectroscopy, and identical location scanning electron microscopy, hence providing a comprehensive understanding of structural changes and their effects. Overall, an experimental toolbox for the systematic development of supported electrocatalysts is now at hand.

4.
Chem Mater ; 35(6): 2612-2623, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008408

RESUMO

A versatile approach to the production of cluster- and single atom-based thin-film electrode composites is presented. The developed TiO x N y -Ir catalyst was prepared from sputtered Ti-Ir alloy constituted of 0.8 ± 0.2 at % Ir in α-Ti solid solution. The Ti-Ir solid solution on the Ti metal foil substrate was anodically oxidized to form amorphous TiO2-Ir and later subjected to heat treatment in air and in ammonia to prepare the final catalyst. Detailed morphological, structural, compositional, and electrochemical characterization revealed a nanoporous film with Ir single atoms and clusters that are present throughout the entire film thickness and concentrated at the Ti/TiO x N y -Ir interface as a result of the anodic oxidation mechanism. The developed TiO x N y -Ir catalyst exhibits very high oxygen evolution reaction activity in 0.1 M HClO4, reaching 1460 A g-1 Ir at 1.6 V vs reference hydrogen electrode. The new preparation concept of single atom- and cluster-based thin-film catalysts has wide potential applications in electrocatalysis and beyond. In the present paper, a detailed description of the new and unique method and a high-performance thin film catalyst are provided along with directions for the future development of high-performance cluster and single-atom catalysts prepared from solid solutions.

5.
Chem Commun (Camb) ; 58(100): 13832-13854, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36472187

RESUMO

Carbon-supported Pt-based nanoalloys (CSPtNs) as the oxygen reduction reaction (ORR) electrocatalysts are considered state-of-the-art electrocatalysts for use in proton exchange membrane fuel cells (PEMFCs). Although their ORR activity performance is already adequate to allow lowering of the Pt loading and thus commercialisation of the fuel cell technology, their stability remains an open challenge. In this Feature Article, the recent achievements and acquired knowledge on the degradation behaviour of these electrocatalysts are overviewed and discussed.

6.
ACS Catal ; 12(24): 15135-15145, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36570081

RESUMO

Decreasing iridium loading in the electrocatalyst presents a crucial challenge in the implementation of proton exchange membrane (PEM) electrolyzers. In this respect, fine dispersion of Ir on electrically conductive ceramic supports is a promising strategy. However, the supporting material needs to meet the demanding requirements such as structural stability and electrical conductivity under harsh oxygen evolution reaction (OER) conditions. Herein, nanotubular titanium oxynitride (TiON) is studied as a support for iridium nanoparticles. Atomically resolved structural and compositional transformations of TiON during OER were followed using a task-specific advanced characterization platform. This combined the electrochemical treatment under floating electrode configuration and identical location transmission electron microscopy (IL-TEM) analysis of an in-house-prepared Ir-TiON TEM grid. Exhaustive characterization, supported by density functional theory (DFT) calculations, demonstrates and confirms that both the Ir nanoparticles and single atoms induce a stabilizing effect on the ceramic support via marked suppression of the oxidation tendency of TiON under OER conditions.

7.
ACS Omega ; 7(4): 3540-3548, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35128261

RESUMO

Degradation of carbon-supported Pt nanocatalysts in fuel cells and electrolyzers hinders widespread commercialization of these green technologies. Transition between oxidized and reduced states of Pt during fast potential spikes triggers significant Pt dissolution. Therefore, designing Pt-based catalysts able to withstand such conditions is of critical importance. We report here on a strategy to suppress Pt dissolution by using an organic matrix tris(aza)pentacene (TAP) as an alternative support material for Pt. The major benefit of TAP is its potential-dependent conductivity in aqueous media, which was directly evidenced by electrochemical impedance spectroscopy. At potentials below ∼0.45 VRHE, TAP is protonated and its conductivity is improved, which enables supported Pt to run hydrogen reactions. At potentials corresponding to Pt oxidation/reduction (>∼0.45 VRHE), TAP is deprotonated and its conductivity is restricted. Tunable conductivity of TAP enhanced the durability of the Pt/TAP with respect to Pt/C when these two materials were subjected to the same degradation protocol (0.1 M HClO4 electrolyte, 3000 voltammetric scans, 1 V/s, 0.05-1.4 VRHE). The exceptional stability of Pt/TAP composite on a nanoscale level was confirmed by identical location TEM imaging before and after the used degradation protocol. Suppression of transient Pt dissolution from Pt/TAP with respect to the Pt/C benchmark was directly measured in a setup consisting of an electrochemical flow cell connected to inductively coupled plasma-mass spectrometry.

8.
ACS Catal ; 11(20): 12510-12519, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34676130

RESUMO

The production of hydrogen via a proton-exchange membrane water electrolyzer (PEM-WE) is directly dependent on the rational design of electrocatalysts for the anodic oxygen evolution reaction (OER), which is the bottleneck of the process. Here, we present a smart design strategy for enhancing Ir utilization and stabilization. We showcase it on a catalyst, where Ir nanoparticles are efficiently anchored on a conductive support titanium oxynitride (TiON x ) dispersed over carbon-based Ketjen Black and covered by a thin layer of copper (Ir/CuTiON x /C), which gets removed in the preconditioning step. Electrochemical OER activity, stability, and structural changes were compared to the Ir-based catalyst, where Ir nanoparticles without Cu are deposited on the same support (Ir/TiON x /C). To study the effect of the sacrificial less-noble metal layer on the catalytic performance of the synthesized material, characterization methods, namely X-ray powder diffraction, X-ray photoemission spectroscopy, and identical location transmission electron microscopy were employed and complemented with scanning flow cell coupled to an inductively coupled plasma mass spectrometer, which allowed studying the online dissolution during the catalytic reaction. Utilization of these advanced methods revealed that the sacrificial Cu layer positively affects both Ir OER mass activity and its durability, which was assessed via S-number, a recently reported stability metric. Improved activity of Cu analogue was ascribed to the higher surface area of smaller Ir nanoparticles, which are better stabilized through a strong metal-support interaction (SMSI) effect.

9.
iScience ; 24(2): 102102, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33659872

RESUMO

Achieving highly active and stable oxygen reduction reaction performance at low platinum-group-metal loadings remains one of the grand challenges in the proton-exchange membrane fuel cells community. Currently, state-of-the-art electrocatalysts are high-surface-area-carbon-supported nanoalloys of platinum with different transition metals (Cu, Ni, Fe, and Co). Despite years of focused research, the established structure-property relationships are not able to explain and predict the electrochemical performance and behavior of the real nanoparticulate systems. In the first part of this work, we reveal the complexity of commercially available platinum-based electrocatalysts and their electrochemical behavior. In the second part, we introduce a bottom-up approach where atomically resolved properties, structural changes, and strain analysis are recorded as well as analyzed on an individual nanoparticle before and after electrochemical conditions (e.g. high current density). Our methodology offers a new level of understanding of structure-stability relationships of practically viable nanoparticulate systems.

10.
J Phys Chem C Nanomater Interfaces ; 125(1): 635-647, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33488908

RESUMO

Electrochemical stability of a commercial Au/C catalyst in an acidic electrolyte has been investigated by an accelerated stress test (AST), which consisted of 10,000 voltammetric scans (1 V/s) in the potential range between 0.58 and 1.41 VRHE. Loss of Au electrochemical surface area (ESA) during the AST pointed out to the degradation of Au/C. Coupling of an electrochemical flow cell with ICP-MS showed that only a minor amount of gold is dissolved despite the substantial loss of gold ESA during the AST (∼35% of initial value remains at the end of the AST). According to the electrochemical mass spectrometry experiments, carbon corrosion occurs during the AST but to a minor extent. By using identical location scanning electron microscopy and identical location transmission electron microscopy, it was possible to discern that the dissolution of small Au particles (<5 nm) within the polydisperse Au/C sample is the main degradation mechanism. The mass of such particles gives only a minor contribution to the overall Au mass of the polydisperse sample while giving a major contribution to the overall ESA, which explains a significant loss of ESA and minor loss of mass during the AST. The addition of low amounts of chloride anions (10-4 M) substantially promoted the degradation of gold nanoparticles. At an even higher concentration of chlorides (10-2 M), the dissolution of gold was rather effective, which is useful from the recycling point of view when rapid leaching of gold is desirable.

11.
ACS Catal ; 11(2): 670-681, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33489433

RESUMO

The development of affordable, low-iridium-loading, scalable, active, and stable catalysts for the oxygen-evolution reaction (OER) is a requirement for the commercialization of proton-exchange membrane water electrolyzers (PEMWEs). However, the synthesis of high-performance OER catalysts with minimal use of the rare and expensive element Ir is very challenging and requires the identification of electrically conductive and stable high-surface-area support materials. We developed a synthesis procedure for the production of large quantities of a nanocomposite powder containing titanium oxynitride (TiON x ) and Ir. The catalysts were synthesized with an anodic oxidation process followed by detachment, milling, thermal treatment, and the deposition of Ir nanoparticles. The anodization time was varied to grow three different types of nanotubular structures exhibiting different lengths and wall thicknesses and thus a variety of properties. A comparison of milled samples with different degrees of nanotubular clustering and morphology retention, but with identical chemical compositions and Ir nanoparticle size distributions and dispersions, revealed that the nanotubular support morphology is the determining factor governing the catalyst's OER activity and stability. Our study is supported by various state-of-the-art materials' characterization techniques, like X-ray photoelectron spectroscopy, scanning and transmission electron microscopies, X-ray powder diffraction and absorption spectroscopy, and electrochemical cyclic voltammetry. Anodic oxidation proved to be a very suitable way to produce high-surface-area powder-type catalysts as the produced material greatly outperformed the IrO2 benchmarks as well as the Ir-supported samples on morphologically different TiON x from previous studies. The highest activity was achieved for the sample prepared with 3 h of anodization, which had the most appropriate morphology for the effective removal of oxygen bubbles.

12.
ACS Appl Nano Mater ; 3(10): 9880-9888, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33134881

RESUMO

Carbon-based nanofibers decorated with metallic nanoparticles (NPs) as hierarchically structured electrodes offer significant opportunities for use in low-temperature fuel cells, electrolyzers, flow and air batteries, and electrochemical sensors. We present a facile and scalable method for preparing nanostructured electrodes composed of Pt NPs on graphitized carbon nanofibers. Electrospinning directly addresses the issues related to large-scale production of Pt-based fuel cell electrocatalysts. Through precursors containing polyacrylonitrile and Pt salt electrospinning along with an annealing protocol, we obtain approximately 180 nm thick graphitized nanofibers decorated with approximately 5 nm Pt NPs. By in situ annealing scanning transmission electron microscopy, we qualitatively resolve and quantitatively analyze the unique dynamics of Pt NP formation and movement. Interestingly, by very efficient thermal-induced segregation of all Pt from the inside to the surface of the nanofibers, we increase overall Pt utilization as electrocatalysis is a surface phenomenon. The obtained nanomaterials are also investigated by spatially resolved Raman spectroscopy, highlighting the higher structural order in nanofibers upon doping with Pt precursors. The rationalization of the observed phenomena of segregation and ordering mechanisms in complex carbon-based nanostructured systems is critically important for the effective utilization of all metal-containing catalysts, such as electrochemical oxygen reduction reactions, among many other applications.

13.
Angew Chem Int Ed Engl ; 59(35): 14736-14746, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32187414

RESUMO

To date, copper is the only monometallic catalyst that can electrochemically reduce CO2 into high value and energy-dense products, such as hydrocarbons and alcohols. In recent years, great efforts have been directed towards understanding how its nanoscale structure affects activity and selectivity for the electrochemical CO2 reduction reaction (CO2 RR). Furthermore, many attempts have been made to improve these two properties. Nevertheless, to advance towards applied systems, the stability of the catalysts during electrolysis is of great significance. This aspect, however, remains less investigated and discussed across the CO2 RR literature. In this Minireview, the recent progress on understanding the stability of copper-based catalysts is summarized, along with the very few proposed degradation mechanisms. Finally, our perspective on the topic is given.

14.
Environ Sci Technol ; 53(19): 11195-11203, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31482713

RESUMO

The ultimate goal in the understanding of complex chemical processes is a complete description of the underlying reaction mechanism. In the present study and for this purpose, a novel experimental platform is introduced that builds upon electrochemistry capable of generating reactive intermediate species at the electrode surface. The atmospherically relevant nitration of catechols is taken as a case example. First, we confirm the recently proposed nitration mechanism, advancing the understanding of atmospheric brown carbon formation in the dark. We are able to selectively quantify aromatic isomers, which is beyond the limits of conventional electroanalysis. Second, we identify a new pathway of nitrocatechol hydroxylation, which proceeds simply by oxidation and the addition of water. This pathway can be environmentally significant in the dark aqueous-phase formation of secondary organic aerosols. Third, the developed methodology is capable of selectively detecting a wide range of nitroaromatics; a possible application in environmental monitoring is proposed.


Assuntos
Catecóis , Água , Aerossóis , Eletroquímica , Oxirredução
15.
Anal Chem ; 91(16): 10353-10356, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31379155

RESUMO

The future significance of energy conversion has stimulated intense investigation of various electrocatalytic materials. Hence electrocatalysts have become the subject of electrochemical characterization on a daily basis. In certain cases of interest, when measuring electrochemical reactions beyond the onset potentials, however, appropriateness of existing electroanalytical methods may be questioned and alternative approaches need to be developed. The present study highlights some shortcomings in the electrochemical investigation of gas evolving reactions. The oxygen evolution reaction (OER) is selected as a case example with a specific focus on the electrochemical stability of a nanoparticulate iridium catalyst. When conventional electrochemical methods, such as thin film rotating disc electrodes are employed to study the materials' stability, the intrinsic degradation is masked by oxygen bubbles, which are inherently being formed during the reaction, especially when high current densities are used. In this Letter, we present a solution to this issue, the so-called floating electrode arrangement. Its elegant usage enables fast and reliable electrochemical characterization of oxygen evolution electrocatalysts.

16.
Angew Chem Int Ed Engl ; 58(38): 13266-13270, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31163100

RESUMO

Preparation of large quantities of high-performance supported Pt-alloy electrocatalysts is crucial for the faster development and implementation of low-temperature proton exchange membrane fuel cells (PEMFCs). One of the prospective nanofabrication synthesis methods is based on the galvanic displacement (GD) reaction. A facile, highly reproducible, gram scale, water-based double passivation GD method is now presented for the synthesis of carbon-supported Pt-M nanoparticles (M=Cu, Ni, Co). It offers great flexibility over the catalyst design, such as the choice of the sacrificial metal (M), variation of the chemical composition of alloy, variation of total metal loading (Pt+M) on carbon support, or even variation of the carbon support itself. The obtained Pt-alloy catalysts are several times more active compared to a Pt reference and exhibits better stability during accelerated degradation tests performed at 60 °C.

17.
Nano Lett ; 19(8): 4919-4927, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31021636

RESUMO

Catalytic properties of advanced functional materials are determined by their surface and near-surface atomic structure, composition, morphology, defects, compressive and tensile stresses, etc; also known as a structure-activity relationship. The catalysts structural properties are dynamically changing as they perform via complex phenomenon dependent on the reaction conditions. In turn, not just the structural features but even more importantly, catalytic characteristics of nanoparticles get altered. Definitive conclusions about these phenomena are not possible with imaging of random nanoparticles with unknown atomic structure history. Using a contemporary PtCu-alloy electrocatalyst as a model system, a unique approach allowing unprecedented insight into the morphological dynamics on the atomic-scale caused by the process of dealloying is presented. Observing the detailed structure and morphology of the same nanoparticle at different stages of electrochemical treatment reveals new insights into atomic-scale processes such as size, faceting, strain and porosity development. Furthermore, based on precise atomically resolved microscopy data, Kinetic Monte Carlo (KMC) simulations provide further feedback into the physical parameters governing electrochemically induced structural dynamics. This work introduces a unique approach toward observation and understanding of nanoparticles dynamic changes on the atomic level and paves the way for an understanding of the structure-stability relationship.

18.
J Am Chem Soc ; 139(36): 12837-12846, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28810123

RESUMO

Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.

19.
Phys Chem Chem Phys ; 19(32): 21446-21452, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28759065

RESUMO

The dissolution of different platinum-based nanoparticles deposited on a commercial high-surface area carbon (HSAC) support in thin catalyst films is investigated using a highly sensitive electrochemical flow cell (EFC) coupled to an inductively coupled plasma mass spectrometer (ICP-MS). The previously reported particle-size-dependent dissolution of Pt is confirmed on selected industrial samples with a mean Pt particle size ranging from 1 to 4.8 nm. This trend is significantly altered when a catalyst is diluted by the addition of HSAC. This indicates that the intrinsic dissolution properties are masked by local oversaturation phenomena, the so-called confinement effect. Furthermore, by replacing the standard HSAC support with a support having an order of magnitude higher specific surface area (a micro- and mesoporous nitrogen-doped high surface area carbon, HSANDC), Pt dissolution is reduced even further. This is due to the so-called non-intrinsic confinement and entrapment effects of the (large amount of) micropores and small mesopores doped with N atoms. The observed more effective Pt re-deposition is presumably induced by local Pt oversaturation and the presence of nitrogen nucleation sites. Overall, our study demonstrates the high importance and beneficial effects of porosity, loading and N doping of the carbon support on the Pt stability in the catalyst layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...