Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteins ; 90(11): 1896-1907, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35567429

RESUMO

We report molecular interactions and inhibition of the main protease (MPro ) of SARS-CoV-2, a key enzyme involved in the viral life cycle. By using a thiadiazolidinone (TDZD) derivative as a chemical probe, we explore the conformational dynamics of MPro via docking protocols and molecular dynamics simulations in all-atom detail. We reveal the local and global dynamics of MPro in the presence of this inhibitor and confirm the inhibition of the enzyme with an IC50 value of 1.39 ± 0.22 µM, which is comparable to other known inhibitors of this enzyme.


Assuntos
Azóis/química , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/química
2.
J Exp Biol ; 225(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014670

RESUMO

Cryoprotection is of interest in many fields of research, necessitating a greater understanding of different cryoprotective agents. Antifreeze proteins have been identified that have the ability to confer cryoprotection in certain organisms. Antifreeze proteins are an evolutionary adaptation that contributes to the freeze resistance of certain fish, insects, bacteria and plants. These proteins adsorb to an ice crystal's surface and restrict its growth within a certain temperature range. We investigated the ability of an antifreeze protein from the desert beetle Anatolica polita, ApAFP752, to confer cryoprotection in the frog Xenopus laevis. Xenopus laevis eggs and embryos microinjected with ApAFP752 exhibited reduced damage and increased survival after a freeze-thaw cycle in a concentration-dependent manner. We also demonstrate that ApAFP752 localizes to the plasma membrane in eggs and embryonic blastomeres and is not toxic for early development. These studies show the potential of an insect antifreeze protein to confer cryoprotection in amphibian eggs and embryos.


Assuntos
Proteínas Anticongelantes , Besouros , Embrião não Mamífero , Proteínas de Insetos , Óvulo , Animais , Proteínas Anticongelantes/metabolismo , Proteínas Anticongelantes/farmacologia , Besouros/química , Crioprotetores/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Proteínas de Insetos/metabolismo , Proteínas de Insetos/farmacologia , Óvulo/efeitos dos fármacos , Xenopus laevis
3.
Biomolecules ; 11(3)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33803017

RESUMO

Non-enzymatic glycation and covalent modification of proteins leads to Advanced Glycation End products (AGEs). AGEs are biomarkers of aging and neurodegenerative disease, and can be induced by impaired neuronal signaling. The objective of this study was to investigate if manipulation of dopamine (DA) in vitro using the model protein, bovine serum albumin (BSA), and in vivo using the model organism Drosophila melanogaster, influences fluorescent AGEs (fAGEs) formation as an indicator of dopamine-induced oxidation events. DA inhibited fAGEs-BSA synthesis in vitro, suggesting an anti-oxidative effect, which was not observed when flies were fed DA. Feeding flies cocaine and methamphetamine led to increased fAGEs formation. Mutants lacking the dopaminergic transporter or the D1-type showed further elevation of fAGEs accumulation, indicating that the long-term perturbation in DA function leads to higher production of fAGEs. To confirm that DA has oxidative properties in vivo, we fed flies antioxidant quercetin (QUE) together with methamphetamine. QUE significantly decreased methamphetamine-induced fAGEs formation suggesting that the perturbation of DA function in vivo leads to increased oxidation. These findings present arguments for the use of fAGEs as a biomarker of DA-associated neurodegenerative changes and for assessment of antioxidant interventions such as QUE treatment.


Assuntos
Dopamina/metabolismo , Drosophila melanogaster/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Soroalbumina Bovina/metabolismo , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Bovinos , Drosophila melanogaster/genética , Glicosilação , Masculino , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Quercetina/administração & dosagem , Quercetina/farmacologia , Espectrometria de Fluorescência
4.
Addict Biol ; 26(3): e12963, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32833318

RESUMO

As complexities of addictive behaviors cannot be fully captured in laboratory studies, scientists use simple addiction-associated phenotypes and measure them in laboratory animals. Locomotor sensitization, characterized by an increased behavioral response to the same dose of the drug, has been extensively used to elucidate the genetic basis and molecular mechanisms of neuronal plasticity. However, to what extent it contributes to the development of addiction is not completely clear. We tested if the development of locomotor sensitization to methamphetamine affects voluntary self-administration, and vice versa, in order to investigate how two drug-associated phenotypes influence one another. In our study, we used the genetically tractable model organism, Drosophila melanogaster, and quantified locomotor sensitization and voluntary self-administration to methamphetamine using behavioral tests that were developed and adapted in our laboratory. We show that flies express robust locomotor sensitization to the second dose of volatilized methamphetamine, which significantly lowers preferential self-administration of methamphetamine. Naive flies preferentially self-administer food with methamphetamine over plain food. Exposing flies to volatilized methamphetamine after voluntary self-administration abolishes locomotor sensitization. We tested period null (per01 ) mutant flies and showed that they do not develop locomotor sensitization, nor do they show preferential self-administration of methamphetamine. Our results suggest that there may be partially overlapping neural circuitry that regulates the expression of locomotor sensitization and preferential self-administration to methamphetamine and that this circuitry requires a functional per gene.


Assuntos
Estimulantes do Sistema Nervoso Central/efeitos adversos , Locomoção/efeitos dos fármacos , Metanfetamina/efeitos adversos , Atividade Motora/efeitos dos fármacos , Animais , Comportamento Aditivo , Estimulantes do Sistema Nervoso Central/administração & dosagem , Drosophila melanogaster , Masculino , Metanfetamina/administração & dosagem , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...