Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 52(24): 14040-9, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24261923

RESUMO

A series of cobalt complexes of ligands based on the 2-(arylazo)pyridine architecture have been synthesized, and the precise structure and stoichiometry of the complexes depend critically on the identity of substituents in the 2, 4, and 6 positions of the phenyl ring. The 2-(arylazo)pyridine motif can support either Co(II) complexes with neutral ligands, Co(II)Cl2(L(a))2 (1), Co(II)Cl2(L(c))2 (3), [Co(II)Cl(L(b))2]2(PF6)2 (5[PF6]2), or Co(III) complexes of reduced 2-(arylazo)pyridine ligand radical anions, L(•-), Co(III)Cl(L(b•-))2 (2), Co(III)Cl(L(c•-))2 (4), and Co(III)Me(L(b•-))2 (6). All three members of the latter class are based on approximately trigonal-bipyramidal CoX(L(•-))2 architectures [L = 2-(arylazo)pyridine] with two azo nitrogen atoms and the X ligand (X = Cl or Me) in the equatorial plane and two pyridine nitrogen atoms occupying axial positions. Density functional theory suggests that the electronic structure of the Co(III) complexes is also dependent on the identity of X: the strong σ-donor methyl gives a low-spin (S = 0) configuration, while the σ/π-donor chloro gives an intermediate-spin (S = 1) local configuration. In certain cases, one-electron reduction of the Co(II)X2L2 complex leads to the formation of Co(III)X(L(•-))2; i.e., reduction of one ligand induces a further one-electron oxidation of the metal center with concomitant reduction of the second ligand.

2.
Chemistry ; 18(6): 1761-71, 2012 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-22237915

RESUMO

Neutral tris-chelated chromium complex [Cr(L(a))(3)] (1a), and its surfactant derivatives [Cr(L(b))(3)] (1b), [Cr(L(c))(3)] (1c), and [Cr(L(d))(3)] (1d) (where L(a)=2-(4'-methoxyphenylazo)pyridine, L(b)=2-(4'-butyloxyphenylazo)pyridine, L(c =2-(4'-octyloxyphenylazo)pyridine, and L(d)=2-(4'-dodecyloxyphenylazo)pyridine) were synthesized. The molecular structure of compound 1a, determined by X-ray diffraction, showed that the local geometry around the metal center is a distorted octahedral with meridional coordination of the ligands. The structural parameters, spectroscopic data, and density functional theory (DFT) calculations on representative complex 1a suggest that ligand L(a) is predominantly an azo-anion-radical-type, and so the complex can be represented as [Cr(III)(L(a.-))(3)]. An assessment of their physicochemical and surface properties was performed with the aim of using these triple-tailed metallosurfactants as precursors for redox-responsive films. The surface-pressure-molecular-area isotherm measurement for compound 1d shows that the complex forms a stable Langmuir film at the air/water interface. The monolayer and multilayers were successfully transferred onto the quartz substrate and the platinum working electrode at a surface pressure of 10 mN m(-1) by the Langmuir-Schaefer (LS) technique. The LS films were studied by UV/Vis spectrometry, infrared spectroscopy, field-emission scanning electron microscopy, and atomic force microscopy. A good linear relationship between the absorbance at 370 nm and the thickness of the layers against the number of deposited layers indicated the uniformity and reproducibility of this transfer process. Voltammograms for platinum-surface-bound LS film of compound 1d showed that the redox response owing to the first oxidation is stable and reproducible after many cycles (>300 cycles). Spectroscopic studies and electrochemical measurements of compound 1d on the LS films revealed that these complexes are potential candidates for molecular devices.

3.
Inorg Chem ; 50(20): 9993-10004, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-21932818

RESUMO

The reaction of 3 equiv of the ligand 2-[(2-chlorophenyl)azo]pyridine (L(a)) or 2-[(4-chlorophenyl)azo]pyridine (L(b)) with 1 equiv of Cr(CO)(6) or Mo(CO)(6) in boiling n-octane afforded [Cr(L(a/b))(3)](0) (1a and 1b) and [Mo(L(a/b))(3)](0) (2a and 2b). The chemical oxidation reaction of these neutral complexes with I(2) in CH(2)Cl(2) provided access to air-stable one-electron-oxidized species as their triiodide (I(3)(-)) salts. The electronic structures of chromium and molybdenum centers coordinated by the three redox noninnocent ligands L(a/b) along with their redox partners have been elucidated by using a host of physical methods: X-ray crystallography, magnetic susceptibility measurements, nuclear magnetic resonance, cyclic voltammetry, absorption spectroscopy, electron paramagnetic resonance spectroscopy, and density functional theory. The four representative complexes, 1a, [1a]I(3), 2a, and [2a]I(3), have been characterized by X-ray crystallography. The results indicate a predominant azo-anion-radical description of the ligands in the neutral chromium(III) species, [Cr(III)(L(•-))(3)], affording a singlet ground state through strong metal-ligand antiferromagnetic coupling. All of the electrochemical processes are ligand-based; i.e., the half-filled (t(2g))(3) set of the Cr(III) d(3) ion remains unchanged throughout. The description of the molybdenum analogue is less clear-cut because mixing between metal- and ligand-based orbitals is more significant. On the basis of variations in net spin densities and orbital compositions, we argue that the oxidation events are again primarily ligand-based, although the electron density at the molybdenum center is clearly more variable than that at the chromium center in the corresponding series [1a](+), 1a, and [1a](-).

4.
Dalton Trans ; 39(11): 2775-84, 2010 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-20200703

RESUMO

Tailor made synthesis of the isomeric azoaromatics, HL(1)-HL(4) [HL = (arylamino)phenylazopyridine] containing a single hydrophobic tail (C(n) = C(10) and C(12)) is described. The coordination induced C-N bond fusion synthetic protocol has been successfully used for the synthesis of the compounds, which are subsequently characterized using various spectroscopic techniques. The single crystal X-ray structure of compound HL(4) has revealed that the hydrophobic chain in it orients itself with all-trans conformation of alkyl groups. Studies of their surface properties clearly demonstrate that these behave as surfactants. Amphiphilic properties of the compounds are followed by the studies of compression isotherms and their surface morphologies are studied with the use of high resolution field emission scanning electron microscopy (FE-SEM) as well as atomic force microscopy (AFM). Distinct differences in surface properties in the two HL isomers are observed and disposition of the hydrophobic tail with respect to the head group is shown to play a significant role in the organization process of the molecules at the air-water interface. Transferred monolayers of the above two isomeric compounds show agglomerated nano-domain structures. This phenomenon has been explained considering hydrophobic tail-tail repulsive interaction within the adjacent molecules. Surface properties of the double tail complex, [Co(L(1))(2)]ClO(4) (1) along with that of the single tail complex, [Co(L(1))(L(5))]ClO(4) (3) are also reported. Amphiphilic behavior of the above azoaromatics are distinctly different than those in their metal free state. Notably, the double tail complex (1) favors bi-layer formation even at low surface pressure region (approximately 10 mN m(-1)). The single tail cobalt complex (3), on the other hand, forms a monolayer at high surface pressure region leading finally to the collapse at a very high pressure approximately 60 mN m(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...