Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 31(12): 107800, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32579927

RESUMO

When evaluating anti-cancer drugs, two different measurements are used: relative viability, which scores an amalgam of proliferative arrest and cell death, and fractional viability, which specifically scores the degree of cell killing. We quantify relationships between drug-induced growth inhibition and cell death by counting live and dead cells using quantitative microscopy. We find that most drugs affect both proliferation and death, but in different proportions and with different relative timing. This causes a non-uniform relationship between relative and fractional response measurements. To unify these measurements, we created a data visualization and analysis platform called drug GRADE, which characterizes the degree to which death contributes to an observed drug response. GRADE captures drug- and genotype-specific responses, which are not captured using traditional pharmacometrics. This study highlights the idiosyncratic nature of drug-induced proliferative arrest and cell death. Furthermore, we provide a metric for quantitatively evaluating the relationship between these behaviors.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos
2.
Nat Chem Biol ; 16(7): 791-800, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32251407

RESUMO

Cancer treatment generally involves drugs used in combinations. Most previous work has focused on identifying and understanding synergistic drug-drug interactions; however, understanding antagonistic interactions remains an important and understudied issue. To enrich for antagonism and reveal common features of these combinations, we screened all pairwise combinations of drugs characterized as activators of regulated cell death. This network is strongly enriched for antagonism, particularly a form of antagonism that we call 'single-agent dominance'. Single-agent dominance refers to antagonisms in which a two-drug combination phenocopies one of the two agents. Dominance results from differences in cell death onset time, with dominant drugs acting earlier than their suppressed counterparts. We explored mechanisms by which parthanatotic agents dominate apoptotic agents, finding that dominance in this scenario is caused by mutually exclusive and conflicting use of Poly(ADP-ribose) polymerase 1 (PARP1). Taken together, our study reveals death kinetics as a predictive feature of antagonism, due to inhibitory crosstalk between cell death pathways.


Assuntos
Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Parthanatos/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/genética , Apoptose/genética , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Antagonismo de Drogas , Sinergismo Farmacológico , Humanos , Cinética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Parthanatos/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...