Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17074, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273545

RESUMO

Tropical regions contain ecologically and socio-economically important habitats, and are home to about 3.8 billion people, many of which directly depend on tropical coastal waters for their well-being. At the basis of these ecosystems are biogeochemical processes. Climate change is expected to have a greater impact in the tropics compared to temperate regions because of the relatively stable environmental conditions found there. However, it was surprising to find only 660 research articles published focusing on the impact of climate change on the biogeochemistry of coastal tropical waters compared to 4823 for temperate waters. In this perspective, we highlight important topics in need of further research. Specifically, we suggest that in tropical regions compared to temperate counterparts climate change stressors will be experienced differently, that organisms have a lower acclimation capacity, and that long-term baseline biogeochemical datasets useful for quantifying future changes are lacking. The low number of research papers on the impacts of climate change in coastal tropical regions is likely due to a mix of reasons including limited resources for research and limited number of long time series in many developing tropical countries. Finally, we propose some action points that we hope will stimulate more studies in tropical coastal waters.


Assuntos
Mudança Climática , Ecossistema , Humanos , Aclimatação , Clima Tropical
2.
Sci Rep ; 12(1): 17309, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243783

RESUMO

Global climate change is leading to shifts in abiotic conditions. Short-term temperature stresses induced by marine heatwaves (MHWs) can affect organisms both during and after the events. However, the recovery capacity of organisms is likely dependent on the magnitude of the initial stress event. Here, we experimentally assessed the effect of MHW magnitude on behavioural and physiological responses of a common marine gastropod, Lunella granulata, both during and after the MHW. Self-righting behaviours tended to become faster under moderate MHWs, whereas there was a trend toward these behaviours slowing under extreme MHWs. After a recovery period at ambient temperatures, individuals that experienced extreme MHWs showed persistent small, but not significant, negative effects. Survival and oxygen consumption rates were unaffected by MHW magnitude both during and after the event. While extreme MHWs may have negative behavioural consequences for tropical marine gastropods, their physiological responses may allow continued survival.


Assuntos
Ecossistema , Gastrópodes , Animais , Mudança Climática , Herbivoria , Humanos , Temperatura
3.
Sci Total Environ ; 839: 156204, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35623533

RESUMO

Microplastics are ubiquitous in the marine environment, and their uptake by many organisms has been well documented. Concern about increasing plastic waste in ecosystems and organisms has led to the production of biodegradable alternatives. However, long breakdown times of biodegradable plastics in natural environments mean they still have the potential to induce ecological impacts. The impacts of microplastics on organisms remain unclear, especially as many experimental microplastic exposures employ particle concentrations orders of magnitude greater than those found in natural ecosystems. Here, we exposed the ecosystem engineer, the Asian green mussel Perna viridis, to non-biodegradable and biodegradable microplastics at two environmentally relevant concentrations (~17-20 particles L-1 and ~ 135-140 particles L-1). After four weeks of exposure, there were no significant effects of microplastic type or concentration on the mortality, oxygen consumption rate, clearance rate, or condition index of P. viridis. With the increasing body of microplastic literature, future exposure studies considering biotic effects should make efforts to employ environmentally relevant concentrations. Further, we suggest that, while a high-profile threat to ecosystems, investigating the effects of microplastics on ecosystems should be conducted alongside, and not draw focus away from, other major threats such as climate change.


Assuntos
Perna (Organismo) , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Microplásticos/toxicidade , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Mar Pollut Bull ; 142: 465-469, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31232325

RESUMO

Biofouling by marine organisms can result in a variety of negative environmental and economic consequences, with decontamination procedures remaining problematic, costly and labour-intensive. Here, we examined the efficacy of direct steam exposure to induce mortality of selected biofouling species: Mytilus edulis; Magallana gigas; Semibalanus balanoides; Fucus vesiculosus; and an Ulva sp. Total mortality occurred at 60-sec of steam exposure for M. edulis and juvenile M. gigas, at 30-sec for S. balanoides, while 300-sec was required for adult M. gigas. Application of steam reduced the biomass of F. vesiculosus and significantly reduced Ulva sp. biomass, with complete degradation being observed for Ulva sp. following 120-sec of exposure. Accordingly, it appears that steam exposure can cause mortality of biofouling organisms through thermal shock. Although preliminary, our novel and promising results suggest that steam applications could potentially be used to decontaminate niche areas and equipment.


Assuntos
Incrustação Biológica/prevenção & controle , Vapor , Animais , Organismos Aquáticos , Biomassa , Fucus , Mytilus edulis , Ostreidae , Thoracica , Fatores de Tempo , Ulva
5.
Mar Environ Res ; 145: 66-72, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30827778

RESUMO

Invasive alien species continue to proliferate and cause severe ecological impacts. Functional responses (FRs) have shown excellent utility in predicting invasive predator success, however, their use in predicting invasive prey success is limited. Here, we assessed invader success by quantifying FRs and prey switching patterns of two native predators, the common sea star, Asterias rubens, and the green crab, Carcinus maenas, towards native blue mussels, Mytilus edulis, and invasive Pacific oysters, Crassostrea gigas. Asterias displayed destabilising type II FRs, whereas Carcinus displayed stabilising type III FRs towards both prey species. Both predators exhibited greater search efficiencies and maximum feeding rates towards native compared to invasive prey. Both predators disproportionately consumed native mussels over invasive oysters when presented simultaneously, even when native mussels were rare in the environment, therefore indicating negligible prey switching. We demonstrate that invasion success may be mediated through differential levels of biotic resistance exerted by native predators.


Assuntos
Braquiúros , Crassostrea , Espécies Introduzidas , Animais , Cadeia Alimentar , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...