Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673101

RESUMO

Oxide Dispersion Strengthened (ODS) ferritic steels are promising materials for the nuclear power sector. This paper presents the results of a study on the sintering process using the Spark Plasma Sintering (SPS) technique, focusing on ODS ferritic steel powders with different contents (0.3 and 0.6 vol.%) of Y2O3. The novelty lies in the analysis of the effect of pre-annealing treatment on powders previously prepared by mechanical alloying on the microstructure, mechanical, and thermal properties of the sinters. Using the SPS method, it was possible to obtain well-densified sinters with a relative density above 98%. Pre-annealing the powders resulted in an increase in the relative density of the sinters and a slight increase in their thermal conductivity. The use of low electron energies during SEM analysis allowed for a fairly good visualization of the reinforcing oxides uniformly dispersed in the matrix. Analysis of the Mössbauer spectroscopy results revealed that pre-annealing induces local atomic rearrangements within the solid solution. In addition, there was an additional spectral component, indicating the formation of a Cr-based paramagnetic phase. The ODS material with a higher Y2O3 content showed increased Vickers hardness values, as well as increased Young's modulus and nanohardness, as determined by nanoindentation tests.

2.
Nat Nanotechnol ; 17(11): 1192-1197, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36138199

RESUMO

The MXene family of two-dimensional transition metal carbides and nitrides already includes ~50 members with distinct numbers of atomic layers, stoichiometric compositions and solid solutions, in-plane or out-of-plane ordering of atoms, and a variety of surface terminations. MXenes have shown properties that make them attractive for applications ranging from energy storage to electronics and medicine. Although this compositional variability allows fine-tuning of the MXene properties, it also creates challenges during the analysis of MXenes because of the presence of multiple light elements (for example, H, C, N, O, and F) in close proximity. Here, we show depth profiling of single particles of MXenes and their parent MAX phases with atomic resolution using ultralow-energy secondary-ion mass spectrometry. We directly detect oxygen in the carbon sublattice, thereby demonstrating the existence of oxycarbide MXenes. We also determine the composition of adjacent surface termination layers and show their interaction with each other. Analysis of the metal sublattice shows that Mo2TiAlC2 MAX exhibits perfect out-of-plane ordering, whereas Cr2TiAlC2 MAX exhibits some intermixing between Cr and Ti in the inner transition metal layer. Our results showcase the capabilities of the developed secondary-ion mass spectrometry technique to probe the composition of layered and two-dimensional materials with monoatomic-layer precision.

3.
Molecules ; 27(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35684572

RESUMO

The problem of graphene protection of Ge surfaces against oxidation is investigated. Raman, X-Ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurements of graphene epitaxially grown on Ge(001)/Si(001) substrates are presented. It is shown that the penetration of water vapor through graphene defects on Gr/Ge(001)/Si(001) samples leads to the oxidation of germanium, forming GeO2. The presence of trigonal GeO2 under graphene was identified by Raman and XRD measurements. The oxidation of Ge leads to the formation of blisters under the graphene layer. It is suggested that oxidation of Ge is connected with the dissociation of water molecules and penetration of OH molecules or O to the Ge surface. It has also been found that the formation of blisters of GeO2 leads to a dramatic increase in the intensity of the graphene Raman spectrum. The increase in the Raman signal intensity is most likely due to the screening of graphene by GeO2 from the Ge(001) surface.

4.
Ultramicroscopy ; 228: 113333, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34134066

RESUMO

The damage-induced voltage alteration (DIVA) contrast mechanism in scanning electron microscope (SEM) has been studied in broad range of the primary electron beam energies, with a special emphasis on the ultra-low energy range. The SEM imaging contrast related to resistivity changes in the In(0.55)Al(0.45)P irradiated with He2+ ions of 600 keV was subjected to an analysis in a range of 10 keV down to 10 eV of primary electron energies. The problem of specimen charging in ultra-low energy range and its effect on the contrast in SEM images has been tackled for the first time. Contrary to expectations based on the classical total emission yield approach, the potentials formed at the highly resistive part of irradiated area led to dramatic increase in the intensity of registered signal for primary electron energies below E1, which can be explained as signal saturation due to potential on the specimen surface acting as repeller for primary electrons. Nevertheless, the experimental data presenting the influence of the beam energy on the potential formation on the surface of an insulating material under electron irradiation have been presented for the first time in ultra-low energy regime.

5.
J Vis Exp ; (158)2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32421009

RESUMO

The presented protocol combines excellent detection limits (1 ppm to 1 ppb) using secondary ion mass spectrometry (SIMS) with reasonable spatial resolution (~1 µm). Furthermore, it describes how to obtain realistic three-dimensional (3D) distributions of segregated impurities/dopants in solid state materials. Direct 3D depth profile reconstruction is often difficult to achieve due to SIMS-related measurement artifacts. Presented here is a method to identify and solve this challenge. Three major issues are discussed, including the i) nonuniformity of the detector being compensated by flat-field correction; ii) vacuum background contribution (parasitic oxygen counts from residual gases present in the analysis chamber) being estimated and subtracted; and iii) performance of all steps within a stable timespan of the primary ion source. Wet chemical etching is used to reveal the position and types of dislocation in a material, then the SIMS result is superimposed on images obtained via scanning electron microscopy (SEM). Thus, the position of agglomerated impurities can be related to the position of certain defects. The method is fast and does not require sophisticated sample preparation stage; however, it requires a high-quality, stable ion source, and the entire measurement must be performed quickly to avoid deterioration of the primary beam parameters.


Assuntos
Gálio/química , Microscopia Eletrônica de Varredura , Espectrometria de Massa de Íon Secundário/métodos
6.
ACS Appl Mater Interfaces ; 11(36): 33207-33220, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31393099

RESUMO

The following paper explores the nature of electronic transport in a hybrid carbon nanotube-graphene conductive network. These networks may have a tremendous impact on the future formation of new electrical conductors, batteries, and supercapacitors, as well as many other electronic and electrical applications. The experiments described show that the deposition of graphene nanoflakes within a carbon nanotube network improves both its electrical conductivity and its current-carrying capacity. They also show that the effectiveness of doping is enhanced. To explain the effects observed in the hybrid carbon nanotube-graphene conductive network, a theoretical model was developed. The theory explains that graphenes are not merely effective conductive fillers of the carbon nanotube networks but also effective bridges that are able to introduce additional states at the Fermi level of carbon nanotubes.

7.
Ultramicroscopy ; 204: 6-9, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31108365

RESUMO

The ion-irradiation damage effects in semiconductors were directly visualized by means of scanning electron microscopy at low beam acceleration voltages (low-kV SEM). The Al0.55Ga0.45As (p-type and n-type) epitaxial layers grown over GaAs substrates were irradiated with energetic He+ ions with fluencies ranging from 8e12 to 8e13 cm-2 and studied in cross-sectional view after cleavage. Secondary electron images collected at low energy (0.5 - 1 keV) of primary electrons show strong contrast related to the local differences in the material resistivity resulting from the ion-induced damage. The main aim of the paper is to present, for the first time, the interpretation of the mechanism of SEM image contrast formation, which has been referred to as Damage-Induced Voltage Alteration (DIVA) contrast and is based on the charging effect in SEM. The unrivalled advantage of this imaging technique is the possibility of immediate two-dimensional visualization of damage effects without complex sample preparation.

8.
Microsc Res Tech ; 81(5): 502-508, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29465819

RESUMO

The performance of the present-day scanning electron microscopy (SEM) extends far beyond delivering electronic images of the surface topography. Oxide dispersion strengthened (ODS) steel is on of the most promising materials for the future nuclear fusion reactor because of its good radiation resistance, and higher operation temperature up to 750°C. The microstructure of ODS should not exceed tens of nm, therefore there is a strong need in a fast and reliable technique for their characterization. In this work, the results of low-kV SEM characterization of nanoprecipitates formed in the ODS matrix are presented. Application of highly sensitive photo-diode BSE detector in SEM imaging allowed for the registration of single nm-sized precipitates in the vicinity of the ODS alloys. The composition of the precipitates has been confirmed by TEM-EDS.

9.
Sci Rep ; 6: 21773, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26899732

RESUMO

The successful integration of graphene into microelectronic devices is strongly dependent on the availability of direct deposition processes, which can provide uniform, large area and high quality graphene on nonmetallic substrates. As of today the dominant technology is based on Si and obtaining graphene with Si is treated as the most advantageous solution. However, the formation of carbide during the growth process makes manufacturing graphene on Si wafers extremely challenging. To overcome these difficulties and reach the set goals, we proposed growth of high quality graphene layers by the CVD method on Ge(100)/Si(100) wafers. In addition, a stochastic model was applied in order to describe the graphene growth process on the Ge(100)/Si(100) substrate and to determine the direction of further processes. As a result, high quality graphene was grown, which was proved by Raman spectroscopy results, showing uniform monolayer films with FWHM of the 2D band of 32 cm(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...