Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622812

RESUMO

Boron (B) is crucial for plant growth and development. B deficiency can impair numerous physiological and metabolic processes, particularly in root development and pollen germination, seriously impeding crop growth and yield. However, the molecular mechanism underlying boron signal perception and signal transduction is rather limited. In this study, we discovered that CPK10, a calcium-dependent protein kinase in the CPK family, has the strongest interaction with the boron transporter BOR1. Mutations in CPK10 led to growth and root development defects under B-deficiency conditions, while constitutively active CPK10 enhanced plant tolerance to B deficiency. Furthermore, we found that CPK10 interacted with and phosphorylated BOR1 at the Ser689 residue. Through various biochemical analyses and complementation of B transport in yeast and plants, we revealed that Ser689 of BOR1 is important for its transport activity. In summary, these findings highlight the significance of the CPK10-BOR1 signaling pathway in maintaining B homeostasis in plants and provide targets for the genetic improvement of crop tolerance to B-deficiency stress.

2.
Stress Biol ; 3(1): 9, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37676334

RESUMO

This brief article highlights the results of Zhang et al. (Science 379, eade8416, 2023), who recently found that the Gγ subunit AT1/GS3 contributes to alkaline tolerance in several main monocots crops, and revealed the molecular mechanism of AT1/GS3-mediated response to alkaline stress in plants, which involves regulating H2O2 levels by inhibiting the phosphorylation of aquaporin PIP2s.

3.
Nat Commun ; 14(1): 5886, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735173

RESUMO

The stress hormone, Abscisic acid (ABA), is crucial for plants to respond to changes in their environment. It triggers changes in cytoplasmic Ca2+ levels, which activate plant responses to external stresses. However, how Ca2+ sensing and signaling feeds back into ABA signaling is not well understood. Here we reveal a calcium sensing module that negatively regulates drought stress via modulating ABA receptor PYLs. Mutants cbl1/9 and cipk1 exhibit hypersensitivity to ABA and drought resilience. Furthermore, CIPK1 is shown to interact with and phosphorylate 7 of 14 ABA receptors at the evolutionarily conserved site corresponding to PYL4 Ser129, thereby suppressing their activities and promoting PP2C activities under normal conditions. Under drought stress, ABA impedes PYLs phosphorylation by CIPK1 to respond to ABA signaling and survive in unfavorable environment. These findings provide insights into a previously unknown negative regulatory mechanism of the ABA signaling pathway, which is mediated by CBL1/9-CIPK1-PYLs, resulting in plants that are more sensitive to drought stress. This discovery expands our knowledge about the interplay between Ca2+ signaling and ABA signaling.


Assuntos
Ácido Abscísico , Cálcio , Secas , Citoplasma , Citosol
4.
Plant Commun ; 4(6): 100678, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37635354

RESUMO

Plant mineral nutrition is essential for crop yields and human health. However, the uneven distribution of mineral elements over time and space leads to a lack or excess of available mineral elements in plants. Among the essential nutrients, calcium (Ca2+) stands out as a prominent second messenger that plays crucial roles in response to extracellular stimuli in all eukaryotes. Distinct Ca2+ signatures with unique parameters are induced by different stresses and deciphered by various Ca2+ sensors. Recent research on the participation of Ca2+ signaling in regulation of mineral elements has made great progress. In this review, we focus on the impact of Ca2+ signaling on plant mineral uptake and detoxification. Specifically, we emphasize the significance of Ca2+ signaling for regulation of plant mineral nutrition and delve into key points and novel avenues for future investigations, aiming to offer new insights into plant ion homeostasis.


Assuntos
Sinalização do Cálcio , Minerais , Humanos , Plantas/metabolismo , Cálcio/metabolismo , Homeostase
5.
New Phytol ; 239(2): 660-672, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37219876

RESUMO

Manganese (Mn) is an essential micronutrient in plants. However, excessive Mn absorption in acidic soils can cause Mn toxicity, which adversely affects plant growth and crop yields. At present, acidic soils cover c. 30% of the Earth's surface. However, the mechanism underpinning Mn uptake remains largely unknown. We identified cbl1/9 and cipk23 mutants exhibiting high-Mn-sensitive phenotype through the reverse genetics method. Furthermore, we identified the CIPK23 phosphorylated NRAMP1 through a variety of protein interaction techniques and protein kinase assays. Here, we demonstrated that two calcineurin B-like proteins, CBL1/9, and their interacting kinase CIPK23 positively regulated the tolerance of Mn toxicity in Arabidopsis. The cbl1 cbl9 double mutant and cipk23 mutants exhibited high-Mn-sensitive phenotypes, which manifested as decreased primary root length, biomass, and chlorophyll concentration, and higher accumulation of Mn. In addition, CIPK23 interacted with and phosphorylated the Mn transporter NRAMP1 primarily at Ser20/22 in vitro and in vivo, and thereby induced clathrin-mediated endocytosis of NRAMP1 to reduce its distribution on the plasma membrane and enhance plant tolerance to Mn toxicity. In summary, we found that the CBL1/9-CIPK23-NRAMP1 module regulates the tolerance to high-Mn toxicity and provide insight into a mechanism of the tolerance of plants to Mn toxicity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Manganês , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Manganês/toxicidade , Manganês/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
6.
Bio Protoc ; 13(5): e4625, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36908635

RESUMO

The vacuole is one of the most conspicuous organelles in plant cells, participating in a series of physiological processes, such as storage of ions and compartmentalization of heavy metals. Isolation of intact vacuoles and elemental analysis provides a powerful method to investigate the functions and regulatory mechanisms of tonoplast transporters. Here, we present a protocol to isolate intact vacuoles from Arabidopsis root protoplasts and analyze their elemental content by inductively coupled plasma mass spectrometry (ICP-MS). In this protocol, we summarize how to prepare the protoplast, extract the vacuole, and analyze element concentration. This protocol has been applied to explore the function and regulatory mechanisms of tonoplast manganese (Mn) transporter MTP8, which is antagonistically regulated by CPK4/5/6/11 and CBL2/3-CIPK3/9/26. This protocol is not only suitable for exploring the functions and regulatory mechanisms of tonoplast transporters, but also for researching other tonoplast proteins. Graphical abstract.

7.
Proc Natl Acad Sci U S A ; 119(40): e2204574119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161952

RESUMO

Homeostasis of the essential micronutrient manganese (Mn) is crucially determined through availability and uptake efficiency in all organisms. Mn deficiency of plants especially occurs in alkaline and calcareous soils, seriously restricting crop yield. However, the mechanisms underlying the sensing and signaling of Mn availability and conferring regulation of Mn uptake await elucidation. Here, we uncover that Mn depletion triggers spatiotemporally defined long-lasting Ca2+ oscillations in Arabidopsis roots. These Ca2+ signals initiate in individual cells, expand, and intensify intercellularly to transform into higher-order multicellular oscillations. Furthermore, through an interaction screen we identified the Ca2+-dependent protein kinases CPK21 and CPK23 as Ca2+ signal-decoding components that bring about translation of these signals into regulation of uptake activity of the high-affinity Mn transporter natural resistance associated macrophage proteins 1 (NRAMP1). Accordingly, a cpk21/23 double mutant displays impaired growth and root development under Mn-limiting conditions, while kinase overexpression confers enhanced tolerance to low Mn supply to plants. In addition, we define Thr498 phosphorylation within NRAMP1 as a pivot mechanistically determining NRAMP1 activity, as revealed by biochemical assays and complementation of yeast Mn uptake and Arabidopsis nramp1 mutants. Collectively, these findings delineate the Ca2+-CPK21/23-NRAMP1 axis as key for mounting plant Mn homeostasis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cálcio , Proteínas de Transporte de Cátions , Manganês , Proteínas Quinases , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Homeostase , Manganês/metabolismo , Micronutrientes/metabolismo , Fosforilação , Raízes de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Solo
8.
Mol Plant ; 15(3): 419-437, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-34848347

RESUMO

Manganese (Mn) is an essential micronutrient for all living organisms. However, excess Mn supply that can occur in acid or waterlogged soils has toxic effects on plant physiology and development. Although a variety of Mn transporter families have been characterized, we have only a rudimentary understanding of how these transporters are regulated to uphold and adjust Mn homeostasis in plants. Here, we demonstrate that two calcineurin-B-like proteins, CBL2/3, and their interacting kinases, CIPK3/9/26, are key regulators of plant Mn homeostasis. Arabidopsis mutants lacking CBL2 and 3 or their interacting protein kinases CIPK3/9/26 exhibit remarkably high Mn tolerance. Intriguingly, CIPK3/9/26 interact with and phosphorylate the tonoplast-localized Mn and iron (Fe) transporter MTP8 primarily at Ser35, which is conserved among MTP8 proteins from various species. Mn transport complementation assays in yeast combined with multiple physiological assays indicate that CBL-CIPK-mediated phosphorylation of MTP8 negatively regulates its transport activity from the cytoplasm to the vacuole. Moreover, we show that sequential phosphorylation of MTP8, initially at Ser31/32 by the calcium-dependent protein kinase CPK5 and subsequently at Ser35 by CIPK26, provides an activation/deactivation fine-tuning mechanism for differential regulation of Mn transport. Collectively, our findings define a two-tiered calcium-controlled mechanism for dynamic regulation of Mn homeostasis under conditions of fluctuating Mn supply.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Cátions , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Homeostase , Manganês/metabolismo , Fosforilação , Vacúolos/metabolismo
9.
Mol Plant ; 14(5): 805-819, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33676025

RESUMO

Manganese (Mn) is an essential micronutrient in plants. However, excessive Mn absorption in acidic and waterlogged soils can lead to Mn toxicity. Despite their essential roles in Mn homeostasis, transcriptional and post-transcriptional modifications of Mn transporters remain poorly understood. Here, we demonstrated that high-Mn stress induces an obvious Ca2+ signature in Arabidopsis. We identified four calcium-dependent protein kinases, CPK4/5/6/11, that interact with the tonoplast-localized Mn and iron (Fe) transporter MTP8 in vitro and in vivo. The cpk4/5/6/11 quadruple mutant displayed a dramatic high-Mn-sensitive phenotype similar to that of the mtp8 mutant. CPKs phosphorylated the N-terminal domain of MTP8 primarily at the Ser31 and Ser32 residues. Transport assays combined with multiple physiological experiments on phospho-dead variant MTP8S31/32A and phospho-mimetic variant MTP8S31/32D plants under different Mn and Fe conditions suggested that Ser31 and Ser32 are crucial for MTP8 function. In addition, genetic analysis showed that CPKs functioned upstream of MTP8. In summary, we identified a tonoplast-associated calcium signaling cascade that orchestrates Mn homeostasis and links Mn toxicity, Ca2+ signaling, and Mn transporters. These findings provide new insight into Mn homeostasis mechanisms and Ca2+ signaling pathways in plants, providing potential targets for engineering heavy metal toxicity-tolerant plants.


Assuntos
Arabidopsis/metabolismo , Sinalização do Cálcio , Homeostase , Ferro/metabolismo , Manganês/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Quinases/metabolismo
10.
J Integr Plant Biol ; 63(3): 597-610, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33331676

RESUMO

Nitrogen (N) is a limiting nutrient for plant growth and productivity. The phytohormone abscisic acid (ABA) has been suggested to play a vital role in nitrate uptake in fluctuating N environments. However, the molecular mechanisms underlying the involvement of ABA in N deficiency responses are largely unknown. In this study, we demonstrated that ABA signaling components, particularly the three subclass III SUCROSE NON-FERMENTING1 (SNF1)-RELATED PROTEIN KINASE 2S (SnRK2) proteins, function in root foraging and uptake of nitrate under N deficiency in Arabidopsis thaliana. The snrk2.2snrk2.3snrk2.6 triple mutant grew a longer primary root and had a higher rate of nitrate influx and accumulation compared with wild-type plants under nitrate deficiency. Strikingly, SnRK2.2/2.3/2.6 proteins interacted with and phosphorylated the nitrate transceptor NITRATE TRANSPORTER1.1 (NRT1.1) in vitro and in vivo. The phosphorylation of NRT1.1 by SnRK2s resulted in a significant decrease of nitrate uptake and impairment of root growth. Moreover, we identified NRT1.1Ser585 as a previously unknown functional site: the phosphomimetic NRT1.1S585D was impaired in both low- and high-affinity transport activities. Taken together, our findings provide new insight into how plants fine-tune growth via ABA signaling under N deficiency.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Modelos Biológicos , Mutação/genética , Nitrogênio/farmacologia , Fenótipo , Fosforilação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Ligação Proteica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...