Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsyst Nanoeng ; 9: 48, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077933

RESUMO

High-precision microelectromechanical system (MEMS) gyroscopes are significant in many applications. Bias instability (BI) is an important parameter that indicates the performance of a MEMS gyroscope and is affected by the 1/f noise of the MEMS resonator and readout circuit. Since the bandgap reference (BGR) is an important block in the readout circuit, reducing its 1/f noise is key to improving a gyroscope's BI. In a traditional BGR, the error amplifier is applied to provide a virtual short-circuit point, but it introduces the main low-frequency noise sources. This paper proposes an ultralow 1/f noise BGR by removing the error amplifier and applying an optimized circuit topology. In addition, a simplified but accurate noise model of the proposed BGR is obtained to optimize the BGR's output noise performance. To verify this design, the proposed BGR has been implemented in a 180 nm CMOS process with a chip area of 545 × 423 µm. The experimental results show that the BGR's output integrated noise from 0.1 to 10 Hz is 0.82 µV and the thermal noise is 35 nV/√Hz. Furthermore, bias stability tests of the MEMS gyroscope fabricated in our laboratory with the proposed BGR and some commercial BGRs are carried out. Statistical results show that reducing the BGR's 1/f noise can nearly linearly improve the gyroscope's BI.

2.
Sensors (Basel) ; 20(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244702

RESUMO

This paper presents the design and implementation of an auto-tuning continuous-time bandpass sigma-delta (ΣΔ) modulator for micro-electromechchanical systems (MEMS) gyroscope readout systems. Its notch frequency can well match the input signal frequency by adding a signal observation to the traditional ΣΔ modulator. The filter of the observation adopts the same architecture as that of the traditional ΣΔ modulator, allowing the two filters to have the same response to input signal change, which is converted into a control voltage on metal-oxide semiconductor (MOS) resistance in the filters. The automatic tuning not only works to solve the mismatch problem caused by process error and temperature variation, but can also be applied to the interface circuit of gyroscopes with different resonant frequencies. The circuit is implemented in a 0.18-µm complementary metal-oxide semiconductor (CMOS) process with a core area of 2.4 mm2. The improved modulator achieves a dynamic range of 106 dB, a noise floor below 120 dB and a maximum signal-to-noise and distortion ratio (SNDR) of 86.4 dB. The tuning capability of the chip is relatively stable under input signals from 6 to 15 kHz at temperatures ranging from -45 to 60 °C.

3.
Sensors (Basel) ; 19(19)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557820

RESUMO

Micromachined gyroscopes require high voltage (HV) for actuation and detection to improve its precision, but the deviation of the HV caused by temperature fluctuations will degrade the sensor's performance. In this paper, a high-voltage temperature-insensitive charge pump is proposed. Without adopting BCD (bipolar-CMOS-DMOS) technology, the output voltage can be boosted over the breakdown voltage of n-well/substrate diode using triple-well NMOS (n-type metal-oxide-semiconductor) transistors. By controlling the pumping clock's amplitude continuously, closed-loop regulation is realized to reduce the output voltage's sensitivity to temperature changes. Besides, the output level is programmable linearly in a large range by changing the reference voltage. The whole circuit has been fabricated in a 0.18- µ m standard CMOS (complementary metal-oxide-semiconductor) process with a total area of 2.53 mm 2 . Measurements indicate that its output voltage has a linear adjustable range from around 13 V to 16.95 V, and temperature tests show that the maximum variations of the output voltage at - 40 ∼ 80 ∘ C are less than 1.1%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...