Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(2)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059346

RESUMO

In order to prepare a carbon-fiber-reinforced polymer composite (CFRP) with ideal microstructure and properties, a new vacuum pressure infiltration CFRP method is proposed based on an analysis of existing CFRP preparation process methods. Research on composite material preparation systems was carried out by using this new method principle. The system mainly includes a fiber pre-forming module, a vacuum heating infiltration module, a hot-press curing molding module, and a data acquisition control module. Under the conditions of natural curing at 0 MPa + 6 h + 25 ℃, vacuum heating curing at -0.05 MPa + 30 min + 80 ℃, and hot-press curing at 0.7 MPa + 5 min + 50 ℃, a two-dimensional (2D) CFRP with excellent microstructure and properties was successfully prepared. Observing the microstructure of the prepared composite material, it can be found that the inside of the composite material was sufficiently and uniformly infiltrated, and common preparation defects such as holes and delamination were effectively controlled. Through the performance test, the bending strength of the material reached 790 MPa.

2.
Polymers (Basel) ; 11(12)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817356

RESUMO

The critical infiltration pressures of the matrix in a two-dimensional (2D) carbon fiber preform were calculated theoretically, and the calculated values of the static and dynamic models were 0.115 and 0.478 MPa, respectively. Compared with the dynamic model, there is no viscous resistance or infiltration front gas pressure in the static model, so the static value is obviously lower than the dynamic value. To verify the rationality of theoretical calculation, 2D carbon fiber reinforced plastics (2D-CFRP) with infiltration pressures of 0.5, 0.6, 0.7, 0.8, and 0.9 MPa were prepared by the vacuum infiltration hot pressing molding process. The microstructure of the composite was observed and the bending strength was tested by three-point bending test. The results show that the infiltration pressure has an important influence on the infiltration effect and the bending fracture morphology. When the infiltration pressure is 0.7 MPa, the composite has an excellent infiltration effect. The fibers distribute reasonable in the fracture. Stress can be effectively transferred when the composite material is loaded. And the bending strength of the composite material reaches 627 MPa at this time.

3.
Materials (Basel) ; 11(11)2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380718

RESUMO

2D-T700/E44 composite materials were prepared by improved compression molding process (ICM) then microstructure and properties of the composites were analyzed and summarized by scanning electron microscope (SEM) and electronic universal testing machine. It is found that defects will occur when the process parameters are not controlled properly and the main defects of composite materials include inadequate resin impregnation, weak interlaminar binding force, fiber displacement warping, hole and brittle fracture. Moreover, there are significant differences in the infiltration microstructure, bending properties, and fracture morphology of the composite materials with different defects. When the defects of weak interlaminar binding force and brittle fracture occur, bending properties of composite materials are relatively low, and they are 220 MPa and 245 MPa, respectively, which reach 34.9% and 38.9% of the bending strength of composite material whose defects are effectively controlled. When the process parameters are reasonable and the defects of the composite materials are effectively eliminated, the bending strength can reach 630 MPa. This will lay a foundation for the preparation of 2D-T700/E44 composite materials with ideal microstructures and properties by ICM.

4.
Micron ; 101: 170-176, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28763734

RESUMO

In spite of the effectiveness of the fiber coatings on interface modification of carbon fiber reinforced magnesium matrix composites, the cost and exclusive equipment for the coatings preparation are usually ignored during research work. In this paper, pyrolytic carbon (PyC) and TiO2 were coated on carbon fiber surface to study the effects of fiber coatings on interfacial microstructure and mechanical properties of carbon fiber reinforced AZ91D composites (Cf/AZ91D composites). It was indicated that both the two coatings could modify the interface and improve the mechanical properties of the composites. The ultimate tensile strength of the TiO2-Cf/AZ91D and the PyC-Cf/AZ91D composite were 333MPa and 400MPa, which were improved by 41.7% and 70.2% respectively, compared with the untreated-Cf/AZ91D composite. The microstructure observation revealed that the strengthening of the composites relied on fiber integrity and moderate interfacial bonding. MgO nano-particles were generated at the interface due to the reaction of TiO2 with Mg in the TiO2-Cf/AZ91D composite. The volume expansion resulting from the reaction let to disordered intergranular films and crystal defects at the interface. The fibers were protected and the interfacial reaction was restrained by PyC coating in the PyC-Cf/AZ91D composite. The principle to select the coating of fiber was proposed by comparing the effectiveness and cost of the coatings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...