Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 56: 142-153, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31491544

RESUMO

The utilization of one-carbon (C1) assimilation pathways to produce chemicals and fuels from low-cost C1 compounds could greatly reduce the substrate-related production costs, and would also alleviate the pressure of the resource supply for bio-manufacturing. However, the natural C1 assimilation pathways normally involve ATP consumption or the loss of carbon resources as CO2, resulting in low product yields, making the design of novel pathways highly pertinent. Here we present several new ATP-independent and carbon-conserving C1 assimilation cycles with 100% theoretical carbon yield, which were discovered by computational analysis of metabolic reaction set with 6578 natural reactions from MetaCyc database and 73 computationally predicted aldolase reactions from ATLAS database. Then, kinetic evaluation of these cycles was conducted and the cycles without kinetic traps were chosen for further experimental verification. Finally, we used the two engineered enzymes Gals and TalBF178Y for the artificial reactions to construct a novel C1 assimilation pathway in vitro and optimized the pathway to achieve 88% carbon yield. These results demonstrate the usefulness of computational design in finding novel metabolic pathways for the efficient utilization of C1 compounds and shedding light on other promising pathways.


Assuntos
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Bases de Dados Factuais , Redes e Vias Metabólicas , Modelos Biológicos , Engenharia Metabólica
2.
J Biotechnol ; 226: 8-13, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27012885

RESUMO

5-Aminolevulinic acid (ALA) is the precursor for the biosynthesis of tetrapyrroles and has broad agricultural and medical applications. Currently ALA is mainly produced by chemical synthesis and microbial fermentation. Cell free multi-enzyme catalysis is a promising method for producing high value chemicals. Here we reported our work on developing a cell free process for ALA production using thermostable enzymes. Cheap substrates (succinate and glycine) were used for ALA synthesis by two enzymes: 5-aminolevulinic acid synthase (ALAS) from Laceyella sacchari (LS-ALAS) and succinyl-CoA synthase (Suc) from Escherichia coli. ATP was regenerated by polyphosphate kinase (Ppk) using polyphosphate as the substrate. Succinate was added into the reaction system in a fed-batch mode to avoid its inhibition effect on Suc. After reaction for 160min, ALA concentration was increased to 5.4mM. This is the first reported work on developing the cell free process for ALA production. Through further process and enzyme optimization the cell free process could be an effective and economic way for ALA production.


Assuntos
Ácido Aminolevulínico/metabolismo , Biocatálise , Biotecnologia/métodos , Enzimas/metabolismo , Técnicas de Cultura Celular por Lotes , Sistema Livre de Células , Eletroforese em Gel de Poliacrilamida , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Especificidade por Substrato , Ácido Succínico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...