Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(15): 25298-25306, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475338

RESUMO

Double perovskites without lead element have attracted great attention in recent years. Further increasing the photoluminescence quantum yield of lead-free double perovskites is necessary for their potential applications. In this work, Na+ doped Cs2SnI6 nanocrystals were synthesized by hot injection method. It was displayed that all the NCs have uniform hexagonal shape with good crystallization. Energy dispersing spectroscopy and X-ray photoelectron spectroscopy proves the Na+ ions were doped in the lattice of perovskite structure. The photoluminescence intensity of doped NCs is increased by 2.7-fold than that of pure NCs. A maximum photoluminescence quantum yield of 72% is obtained. The luminous mechanism was investigated by femtosecond transient absorption spectrum and a self-trap emission was proved by the observation of ground state bleaching and photo-induced absorption signals.

2.
Opt Express ; 29(22): 36988-36996, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34809096

RESUMO

Large scale ordered Au nanoarrays are fabricated by nanosphere lithography technique. The photoluminescence improvement of CsPbBr3-xIx nanocrystals by more than three times is realized in the CsPbBr3-xIx nanocrystal/Au nanoarray/Si structure. Time-resolved photoluminescence decay curves indicate that the lifetime is decreased by introducing the Au nanoarrays, which results in a increasing radiation recombination rate. The reflection spectra with two major valleys (the dip in the curve) located at ∼325 nm and 545 nm of Au nanoarray/Si structure, which illustrates two plasmonic resonance absorption peaks of the Au nanoarrays. The enhancement of photoluminescence is ascribed to a well match between the excitation/emission of CsPbBr3-xIx nanocrystals and localized surface plasmon/gap plasmon resonance absorption of the ordered Au nanoarrays, as also revealed from the finite-difference time-domain simulation analysis. Our work offers an effective strategy to improve the fluorescence of perovskite nanocrystals and provide the potential for further applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...