Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 11(1): 118, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464280

RESUMO

Repetitive mild traumatic brain injury (r-mTBI) has increasingly become recognised as a risk factor for the development of neurodegenerative diseases, many of which are characterised by tau pathology, metal dyshomeostasis and behavioural impairments. We aimed to characterise the status of tau and the involvement of iron dyshomeostasis in repetitive controlled cortical impact injury (5 impacts, 48 h apart) in 3-month-old C57Bl6 mice at the chronic (12-month) time point. We performed a battery of behavioural tests, characterised the status of neurodegeneration-associated proteins (tau and tau-regulatory proteins, amyloid precursor protein and iron-regulatory proteins) via western blot; and metal levels using bulk inductively coupled plasma-mass spectrometry (ICP-MS). We report significant changes in various ipsilateral iron-regulatory proteins following five but not a single injury, and significant increases in contralateral iron, zinc and copper levels following five impacts. There was no evidence of tau pathology or changes in tau-regulatory proteins following five impacts, although some changes were observed following a single injury. Five impacts resulted in significant gait deficits, mild anhedonia and mild cognitive deficits at 9-12 months post-injury, effects not seen following a single injury. To the best of our knowledge, we are the first to describe chronic changes in metals and iron-regulatory proteins in a mouse model of r-mTBI, providing a strong indication towards an overall increase in brain iron levels (and other metals) in the chronic phase following r-mTBI. These results bring to question the relevance of tau and highlight the involvement of iron dysregulation in the development and/or progression of neurodegeneration following injury, which may lead to new therapeutic approaches in the future.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Camundongos , Animais , Concussão Encefálica/patologia , Camundongos Transgênicos , Ferro , Proteínas Reguladoras de Ferro , Camundongos Endogâmicos C57BL , Proteínas tau/metabolismo , Fatores de Transcrição , Modelos Animais de Doenças , Lesões Encefálicas Traumáticas/complicações
2.
Br J Pharmacol ; 180(2): 214-234, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36102035

RESUMO

BACKGROUND AND PURPOSE: Traumatic brain injury (TBI) remains a leading cause of mortality and morbidity in young adults. The role of iron in potentiating neurodegeneration following TBI has gained recent interest as iron deposition has been detected in the injured brain in the weeks to months post-TBI, in both the preclinical and clinical setting. A failure in iron homeostasis can lead to oxidative stress, inflammation and excitotoxicity; and whether this is a cause or consequence of the long-term effects of TBI remains unknown. EXPERIMENTAL APPROACH: We investigated the role of iron and the effect of therapeutic intervention using a brain-permeable iron chelator, deferiprone, in a controlled cortical impact mouse model of TBI. An extensive assessment of cognitive, motor and anxiety/depressive outcome measures were examined, and neuropathological and biochemical changes, over a 3-month period post-TBI. KEY RESULTS: Lesion volume was significantly reduced at 3 months, which was preceded by a reduction in astrogliosis, microglia/macrophages and preservation of neurons in the injured brain at 2 weeks and/or 1 month post-TBI in mice receiving oral deferiprone. Deferiprone treatment showed significant improvements in neurological severity scores, locomotor/gait performance and cognitive function, and attenuated anxiety-like symptoms post-TBI. Deferiprone reduced iron levels, lipid peroxidation/oxidative stress and altered expression of neurotrophins in the injured brain over this period. CONCLUSION AND IMPLICATIONS: Our findings support a detrimental role of iron in the injured brain and suggest that deferiprone (or similar iron chelators) may be promising therapeutic approaches to improve survival, functional outcomes and quality of life following TBI.


Assuntos
Lesões Encefálicas Traumáticas , Qualidade de Vida , Animais , Camundongos , Deferiprona/farmacologia , Deferiprona/uso terapêutico , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Ferro
3.
Metallomics ; 14(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36460052

RESUMO

Metal dyshomeostasis is a well-established consequence of neurodegenerative diseases and traumatic brain injury. While the significance of metals continues to be uncovered in many neurological disorders, their implication in repetitive mild traumatic brain injury remains uncharted. To address this gap, we characterized the spatial distribution of metal levels (iron, zinc, and copper) using laser ablation-inductively coupled plasma-mass spectrometry, the profile of metal-binding proteins via size exclusion chromatography-inductively coupled plasma-mass spectrometry and the expression of the major iron storing protein ferritin via western blotting. Using a mouse model of repetitive mild traumatic brain injury, 3-month-old male and female C57Bl6 mice received one or five impacts (48 h apart). At 1 month following 5× TBI (traumatic brain injury), iron and ferritin levels were significantly elevated in the contralateral cortex. There was a trend toward increased iron levels in the entire contralateral hemisphere and a reduction in contralateral cortical iron-binding proteins following 1× TBI. No major changes in zinc levels were seen in both hemispheres following 5× or 1× TBI, although there was a reduction in ipsilateral zinc-binding proteins following 5× TBI and a contralateral increase in zinc-binding proteins following 1× TBI. Copper levels were significantly increased in both hemispheres following 5× TBI, without changes in copper-binding proteins. This study shows for the first time that repetitive mild TBI (r-mTBI) leads to metal dyshomeostasis, highlighting its potential involvement in promoting neurodegeneration, which provides a rationale for examining the benefit of metal-targeting drugs, which have shown promising results in neurodegenerative conditions and single TBI, but have yet to be tested following r-mTBI.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Metaloproteínas , Doenças Neurodegenerativas , Camundongos , Animais , Masculino , Feminino , Cobre/metabolismo , Metaloproteínas/metabolismo , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/metabolismo , Ferro/metabolismo , Zinco/metabolismo , Ferritinas , Modelos Animais de Doenças
4.
Eur J Neurosci ; 56(9): 5342-5367, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35768153

RESUMO

Repetitive mild traumatic brain injury, commonly experienced following sports injuries, results in various secondary injury processes and is increasingly recognised as a risk factor for the development of neurodegenerative conditions such as chronic traumatic encephalopathy, which is characterised by tau pathology. We aimed to characterise the underlying pathological mechanisms that might contribute to the onset of neurodegeneration and behavioural changes in the less-explored subacute (1-month) period following single or repetitive controlled cortical impact injury (five impacts, 48 h apart) in 12-week-old male and female C57Bl6 mice. We conducted motor and cognitive testing, extensively characterised the status of tau and its regulatory proteins via western blot and quantified neuronal populations using stereology. We report that r-mTBI resulted in neurobehavioural deficits, gait impairments and anxiety-like behaviour at 1 month post-injury, effects not seen following a single injury. R-mTBI caused a significant increase in amyloid precursor protein, an increased trend towards tau phosphorylation and significant changes in kinase/phosphatase proteins that may promote a downstream increase in tau phosphorylation, but no changes in synaptic or neuroinflammatory markers. Lastly, we report neuronal loss in various brain regions following both single and repeat injuries. We demonstrate herein that repeated impacts are required to promote the initiation of a cascade of biochemical events that are consistent with the onset of neurodegeneration subacutely post-injury. Identifying the timeframe in which these changes occur and the pathological mechanisms involved will be crucial for the development of future therapeutics to prevent the onset or mitigate the progression of neurodegeneration following r-mTBI.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Animais , Masculino , Feminino , Camundongos , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide , Concussão Encefálica/complicações , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Transtornos da Memória , Fatores de Transcrição , Lesões Encefálicas Traumáticas/complicações
5.
J Neurotrauma ; 39(13-14): 902-922, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35293225

RESUMO

Repetitive mild traumatic brain injury (r-mTBI), commonly experienced by athletes and military personnel, causes changes in multiple intracellular pathways, one of which involves the tau protein. Tau phosphorylation plays a role in several neurodegenerative conditions including chronic traumatic encephalopathy (CTE), a progressive neurodegenerative disorder linked to repeated head trauma. There is now mounting evidence suggesting that tau phosphorylation may be regulated by metal ions (such as iron, zinc and copper), which themselves are implicated in aging and neurodegenerative disorders such as Alzheimer's disease (AD). Recent work has also shown that a single TBI can result in age-dependent and region-specific modulation of metal ions. As such, this review explores the linkage among TBI, CTE, aging, and neurodegeneration, with a specific focus on the involvement of (and interaction between) tau pathology and metal dyshomeostasis. The authors highlight that metal dyshomeostasis has yet to be investigated in the context of repeat head trauma or CTE. Given the evidence that metal dyshomeostasis contributes to the onset and/or progression of neurodegeneration, and that CTE itself is a neurodegenerative condition, this brings to light an uncharted link that should be explored. The development of adequate models of r-mTBI and/or CTE will be crucial in deepening our understanding of the pathological mechanisms that drive the clinical manifestations in these conditions and also in the development of effective therapeutics targeted toward slowing progressive neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Concussão Encefálica , Encefalopatia Traumática Crônica , Traumatismos Craniocerebrais , Doenças Neurodegenerativas , Doença de Alzheimer/complicações , Concussão Encefálica/complicações , Encefalopatia Traumática Crônica/patologia , Traumatismos Craniocerebrais/complicações , Humanos , Doenças Neurodegenerativas/etiologia , Proteínas tau/metabolismo
6.
Subcell Biochem ; 91: 107-122, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30888651

RESUMO

With an increasingly ageing population that is expected to double by 2050 in the U.S., it is paramount that we further understand the neurological changes that occur during ageing. This is relevant not only in the context of "pathological" ageing, where the development of many neurodegenerative disorders is typically a feature of only the older population (and indeed, age is the primary risk factor for many conditions such as Alzheimer's disease), but also for what is considered to be "normal" or "healthy" ageing. Specifically, a significant proportion of the older population are affected by "age-related cognitive decline" (ARCD), which is both independent of dementia and has an incidence 70% higher than dementia alone. However, whilst it is reported that there are pathogenic and phenotypic overlaps between healthy and pathological ageing, it is clear that there is a need to identify the pathways and understand the mechanisms that contribute to this loss of cognitive function with normal ageing, particularly in light of the increasing life expectancy of the global population. Importantly, there is an increasing body of evidence implicating zinc homeostasis as a key player in learning and memory and also potentially ARCD. Further research will ultimately contribute to the development of targeted therapeutics that will promote successful brain ageing. In this chapter we will explore the notion of ARCD, with a perspective on potential key neurochemical pathways that can be targeted for future intervention.


Assuntos
Envelhecimento/fisiologia , Envelhecimento/psicologia , Transtornos Cognitivos/patologia , Transtornos Cognitivos/psicologia , Cognição/fisiologia , Envelhecimento/patologia , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Doença de Alzheimer/terapia , Transtornos Cognitivos/terapia , Humanos , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...