Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 13(12): 5797-802, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24228733

RESUMO

The recent focus on topological insulators is due to the scientific interest in the new state of quantum matter as well as the technology potential for a new generation of THz optoelectronics, spintronics and quantum computations. It is important to elucidate the dynamics of the Dirac fermions in the topologically protected surface state. Hence we utilized a novel ultrafast optical pump mid-infrared probe to explore the dynamics of Dirac fermions near the Dirac point. The femtosecond snapshots of the relaxation process were revealed by the ultrafast optics. Specifically, the Dirac fermion-phonon coupling strength in the Dirac cone was found to increase from 0.08 to 0.19 while Dirac fermions were away from the Dirac point into higher energy states. Further, the energy-resolved transient reflectivity spectra disclosed the energy loss rate of Dirac fermions at room temperature was about 1 meV/ps. These results are crucial to the design of Dirac fermion devices.


Assuntos
Nanoestruturas/química , Nanotecnologia , Óptica e Fotônica , Teoria Quântica , Semicondutores , Espectrofotometria Infravermelho
2.
Phys Rev Lett ; 108(25): 257006, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-23004646

RESUMO

Quasiparticle dynamics of FeSe single crystals revealed by dual-color transient reflectivity measurements (ΔR/R) provides unprecedented information on Fe-based superconductors. The amplitude of the fast component in ΔR/R clearly gives a competing scenario between spin fluctuations and superconductivity. Together with the transport measurements, the relaxation time analysis further exhibits anomalous changes at 90 and 230 K. The former manifests a structure phase transition as well as the associated phonon softening. The latter suggests a previously overlooked phase transition or crossover in FeSe. The electron-phonon coupling constant λ is found to be 0.16, identical to the value of theoretical calculations. Such a small λ demonstrates an unconventional origin of superconductivity in FeSe.

3.
Nat Commun ; 2: 225, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21407191

RESUMO

Magnetoelectrics and multiferroics present exciting opportunities for electric-field control of magnetism. However, there are few room-temperature ferromagnetic-ferroelectrics. Among the various types of multiferroics the bismuth ferrite system has received much attention primarily because both the ferroelectric and the antiferromagnetic orders are quite robust at room temperature. Here we demonstrate the emergence of an enhanced spontaneous magnetization in a strain-driven rhombohedral and super-tetragonal mixed phase of BiFeO3. Using X-ray magnetic circular dichroism-based photoemission electron microscopy coupled with macroscopic magnetic measurements, we find that the spontaneous magnetization of the rhombohedral phase is significantly enhanced above the canted antiferromagnetic moment in the bulk phase, as a consequence of a piezomagnetic coupling to the adjacent tetragonal-like phase and the epitaxial constraint. Reversible electric-field control and manipulation of this magnetic moment at room temperature is also shown.


Assuntos
Magnetismo , Teste de Materiais , Bismuto/química , Eletricidade , Fenômenos Eletromagnéticos , Microanálise por Sonda Eletrônica , Compostos Férricos/química , Nanopartículas de Magnetita , Temperatura
4.
J Phys Condens Matter ; 21(2): 026013, 2009 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21814006

RESUMO

We investigated the magnetic and ferroelectric properties of c-axis oriented orthorhombic phase HoMnO(3) (o-HMO in Pbnm symmetry setting) thin films grown on Nb-doped SrTiO(3)(001) substrates. The o-HMO films exhibit an antiferromagnetic ordering near 42 K, irrespective of the orientation of the applied field. However, an additional magnetic ordering occurring around 35 K was observed when the field was applied along the c-axis of o-HMO, which was absent when the field was applied in the ab-plane. The magnetocapacitance measured along the c-axis showed that although there is evidence of dielectric constant enhancement when the temperature is below 35 K the expected abrupt change in dielectric constant appears at a much lower temperature and reaches maximum around 13.5 K, indicating that the low-temperature c-axis polarization might be related to the ordering of the Ho(3+) moment. The lattice constant analyses using x-ray diffraction and the observation of a slight magnetization hysteresis suggest that the weak second magnetic transition along the c-axis at 35 K might be more relevant to the strain-induced effect on antiferromagnetism.

5.
Opt Express ; 16(25): 20610-6, 2008 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-19065200

RESUMO

We report on the formation of organized sub-micron YBa(2)Cu(3)O(7) (YBCO) dots induced by irradiating femtosecond laser pulses on YBCO films prepared by pulse laser deposition with fluence in the range of 0.21 approximately 0.53 J/cm(2). The morphology of the YBCO film surface depends strongly on the laser fluences irradiated. At lower laser fluence (approximately 0.21 J/cm(2)) the morphology was pattern of periodic ripples with sub-micrometer spacing. Slightly increasing the laser fluence to 0.26 J/cm(2) changes the pattern into organized sub-micron dots with diameters ranging from 100 nm to 800 nm and height of 150 nm. Further increase of the laser fluence to over 0.32 J/cm(2), however, appeared to result in massive melting and led to irregular morphology. The mechanism and the implications of the current findings will be discussed. Arrays of YBCO sub-micron dots with T(c) = 89.7 K were obtained.


Assuntos
Lasers , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Nanoestruturas/efeitos da radiação , Tamanho da Partícula , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...