Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37190370

RESUMO

This article proposes a decentralized controller for differential mobile robots, providing autonomous navigation and obstacle avoidance by enforcing a formation toward trajectory tracking. The control system relies on dynamic modeling, which integrates evasion forces from obstacles, formation forces, and path-following forces. The resulting control loop can be seen as a dynamic extension of the kinematic model for the differential mobile robot, producing linear and angular velocities fed to the mobile robot's kinematic model and thus passed to the low-level wheel controller. Using the Lyapunov method, the closed-loop stability is proven for the non-collision case. Experimental and simulated results that support the stability analysis and the performance of the proposed controller are shown.

2.
Sensors (Basel) ; 22(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36433442

RESUMO

A Kalman filter can be used to fill space-state reconstruction dynamics based on knowledge of a system and partial measurements. However, its performance relies on accurate modeling of the system dynamics and a proper characterization of the uncertainties, which can be hard to obtain in real-life scenarios. In this work, we explore how the values of a Kalman gain matrix can be estimated by using spiking neural networks through a combination of biologically plausible neuron models with spike-time-dependent plasticity learning algorithms. The performance of proposed neural architecture is verified with simulations of some representative nonlinear systems, which show promising results. This approach traces a path for its implementation in neuromorphic analog hardware that can learn and reconstruct partial and changing dynamics of a system without the massive power consumption that is typically needed in a Von Neumann-based computer architecture.


Assuntos
Algoritmos , Redes Neurais de Computação , Neurônios/fisiologia , Computadores , Sistemas Computacionais
3.
Front Neurorobot ; 16: 904017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663727

RESUMO

Neuromorphic computing is a recent class of brain-inspired high-performance computer platforms and algorithms involving biologically-inspired models adopting hardware implementation in integrated circuits. The neuromorphic computing applications have provoked the rise of highly connected neurons and synapses in analog circuit systems that can be used to solve today's challenging machine learning problems. In conjunction with biologically plausible learning rules, such as the Hebbian learning and memristive devices, biologically-inspired spiking neural networks are considered the next-generation neuromorphic hardware construction blocks that will enable the deployment of new analog in situ learning capable and energetic efficient brain-like devices. These features are envisioned for modern mobile robotic implementations, currently challenging to overcome the pervasive von Neumann computer architecture. This study proposes a new neural architecture using the spike-time-dependent plasticity learning method and step-forward encoding algorithm for a self tuning neural control of motion in a joint robotic arm subjected to dynamic modifications. Simulations were conducted to demonstrate the proposed neural architecture's feasibility as the network successfully compensates for changing dynamics at each simulation run.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...