Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38585724

RESUMO

Neurofibromatosis Type 1 (NF1) is a common cancer predisposition syndrome, caused by heterozygous loss of function mutations in the tumor suppressor gene NF1. Individuals with NF1 develop benign tumors of the peripheral nervous system (neurofibromas), originating from the Schwann cell linage after somatic loss of the wild type NF1 allele, some of which progress further to malignant peripheral nerve sheath tumors (MPNST). There is only one FDA approved targeted therapy for symptomatic plexiform neurofibromas and none approved for MPNST. The genetic basis of NF1 syndrome makes associated tumors ideal for using synthetic drug sensitivity approaches to uncover therapeutic vulnerabilities. We developed a drug discovery pipeline to identify therapeutics for NF1-related tumors using isogeneic pairs of NF1-proficient and deficient immortalized human Schwann cells. We utilized these in a large-scale high throughput screen (HTS) for drugs that preferentially kill NF1-deficient cells, through which we identified 23 compounds capable of killing NF1-deficient Schwann cells with selectivity. Multiple hits from this screen clustered into classes defined by method of action. Four clinically interesting drugs from these classes were tested in vivo using both a genetically engineered mouse model of high-grade peripheral nerve sheath tumors and human MPNST xenografts. All drugs tested showed single agent efficacy in these models as well as significant synergy when used in combination with the MEK inhibitor selumetinib. This HTS platform yielded novel therapeutically relevant compounds for the treatment of NF1-associated tumors and can serve as a tool to rapidly evaluate new compounds and combinations in the future.

2.
Mol Ther Oncol ; 32(2): 200783, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38595983

RESUMO

Oncolytic adenoviruses (Ads) stand out as a promising strategy for the targeted infection and lysis of tumor cells, with well-established clinical utility across various malignancies. This study delves into the therapeutic potential of oncolytic Ads in the context of neurofibromatosis type 1 (NF1)-associated malignant peripheral nerve sheath tumors (MPNSTs). Specifically, we evaluate conditionally replicative adenoviruses (CRAds) driven by the cyclooxygenase 2 (COX2) promoter, as selective agents against MPNSTs, demonstrating their preferential targeting of MPNST cells compared with non-malignant Schwann cell control. COX2-driven CRAds, particularly those with modified fiber-knobs exhibit superior binding affinity toward MPNST cells and demonstrate efficient and preferential replication and lysis of MPNST cells, with minimal impact on non-malignant control cells. In vivo experiments involving intratumoral CRAd injections in immunocompromised mice with human MPNST xenografts significantly extend survival and reduce tumor growth rate compared with controls. Moreover, in immunocompetent mouse models with MPNST-like allografts, CRAd injections induce a robust infiltration of CD8+ T cells into the tumor microenvironment (TME), indicating the potential to promote a pro-inflammatory response. These findings underscore oncolytic Ads as promising, selective, and minimally toxic agents for MPNST therapy, warranting further exploration.

3.
Mol Ther Nucleic Acids ; 33: 227-239, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37520682

RESUMO

Neurofibromatosis type 1 (NF1) results from germline mutations in the tumor-suppressor gene NF1 and predisposes patients to developing nervous system tumors. Twenty percent of NF1 patients harbor nonsense mutations resulting in premature termination codons (PTCs). Nonsense suppression therapies can facilitate ribosomal readthrough of PTCs to restore full-length protein, but their potential in NF1 is underexplored. We developed a minipig model of NF1 carrying a PTC to test whether nonsense suppression could restore expression of the NF1-encoded protein neurofibromin in vitro and in vivo. Nonsense suppression did not reliably increase neurofibromin in primary NF1-/- Schwann cells isolated from minipig neurofibromas but could reduce phosphorylated ERK. Gentamicin in vivo produced a similar plasma pharmacokinetic profile to humans and was detectable in clinically relevant tissues, including cerebral cortex, sciatic nerve, optic nerve, and skin. In gentamicin-treated animals, increased neurofibromin expression was seen in the optic nerve. Nonsense-mediated decay (NMD) causes degradation of transcripts with PTCs, which could impede nonsense suppression therapies. Nonsense suppression in combination with NMD inhibition restored neurofibromin protein expression in primary NF1-/- Schwann cells isolated from minipig neurofibromas. Thus, the effectiveness of nonsense suppression therapies can be improved in NF1 by the concurrent use of NMD inhibitors.

4.
Neuro Oncol ; 25(11): 2044-2057, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37246765

RESUMO

BACKGROUND: Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft tissue sarcomas that often develop in patients with neurofibromatosis type 1 (NF1). To address the critical need for novel therapeutics in MPNST, we aimed to establish an ex vivo 3D platform that accurately captured the genomic diversity of MPNST and could be utilized in a medium-throughput manner for drug screening studies to be validated in vivo using patient-derived xenografts (PDX). METHODS: Genomic analysis was performed on all PDX-tumor pairs. Selected PDX were harvested for assembly into 3D microtissues. Based on prior work in our labs, we evaluated drugs (trabectedin, olaparib, and mirdametinib) ex vivo and in vivo. For 3D microtissue studies, cell viability was the endpoint as assessed by Zeiss Axio Observer. For PDX drug studies, tumor volume was measured twice weekly. Bulk RNA sequencing was performed to identify pathways enriched in cells. RESULTS: We developed 13 NF1-associated MPNST-PDX and identified mutations or structural abnormalities in NF1 (100%), SUZ12 (85%), EED (15%), TP53 (15%), CDKN2A (85%), and chromosome 8 gain (77%). We successfully assembled PDX into 3D microtissues, categorized as robust (>90% viability at 48 h), good (>50%), or unusable (<50%). We evaluated drug response to "robust" or "good" microtissues, namely MN-2, JH-2-002, JH-2-079-c, and WU-225. Drug response ex vivo predicted drug response in vivo, and enhanced drug effects were observed in select models. CONCLUSIONS: These data support the successful establishment of a novel 3D platform for drug discovery and MPNST biology exploration in a system representative of the human condition.


Assuntos
Neoplasias de Bainha Neural , Neurofibromatose 1 , Neurofibrossarcoma , Humanos , Neurofibrossarcoma/patologia , Medicina de Precisão , Neurofibromatose 1/patologia , Neoplasias de Bainha Neural/patologia , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...