Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(22): 8346-8354, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38846382

RESUMO

Despite significant research, the mechanistic nuances of unusual reactivity at the air-water interface, especially in microdroplets, remain elusive. The likely contributors include electric fields and partial solvation at the interface. To reveal these intricacies, we measure the frequency shift of a well-defined azide vibrational probe at the air-water interface, while independently controlling the surface charge density by introducing surfactants. First, we establish the response of the probe in the bulk and demonstrate that it is sensitive to both electrostatics and hydrogen bonding. From interfacial spectroscopy we infer that the azide is neither fully hydrated nor in a completely aprotic dielectric environment; instead, it experiences an intermediate environment. In the presence of hydrogen bond-accepting sulphate surfactants, competition arises for interfacial water with the azide. However, the dominant influence stems from the electrostatic effect of their negative heads, resulting in a significant blue-shift. Conversely, for the positive ammonium surfactants, our data indicate a balanced interplay between electrostatics and hydrogen bonding, leading to a minimal shift in the probe. Our results demonstrate partial solvation at the interface and highlights that both hydrogen bonding and electrostatics may assist or oppose each other in polarizing a reactant, intermediate, or product at the interface, which is important for understanding and tuning interfacial reactivity.

2.
Chem Sci ; 15(17): 6378-6384, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699259

RESUMO

In spite of the ubiquity of acid/base ions and salts in biological systems, their influence on hydrophobic self-assembly remains an open question. Here we use a combined experimental and theoretical strategy to quantify the influence of H+ and OH-, as well as salts containing Li+, Na+, Cl- and Br-, on the hydrophobic self-assembly of micelles composed of neutral oily 1,2-hexanediol surfactants. The distributions of aggregate sizes, both below and above the critical micelle concentration (CMC), are determined using Raman multivariate curve resolution (Raman-MCR) spectroscopy to quantify the multi-aggregation chemical potential surface (MCPS) that drives self-assembly. The results reveal that ions have little influence on the formation of hydrophobic contact dimers but can significantly drive high-order self assembly. Moreover, the hydration-shells of oily solutes are found to expel the above salt ions and OH-, but to attract H+, with wide-ranging implications.

3.
J Phys Chem Lett ; 13(3): 923-930, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35050629

RESUMO

Vibrational sum frequency spectroscopy (VSFS) and pressure-area Langmuir trough measurements were used to investigate the binding of alkali metal cations to eicosyl sulfate (ESO4) surfactants in monolayers at the air/water interface. The number density of sulfate groups could be tuned by mixing the anionic surfactant with eicosanol. The equilibrium dissociation constant for K+ to the fatty sulfate interface showed 10 times greater affinity than for Li+ and approximately 3 times greater than for Na+. All three cations formed solvent shared ion pairs when the mole fraction of ESO4 was 0.33 or lower. Above this threshold charge density, Li+ formed contact ion pairs with the sulfate headgroups, presumably via bridging structures. By contrast, K+ only bound to the sulfate moieties in solvent shared ion pairing configurations. The behavior for Na+ was intermediate. These results demonstrate that there is not necessarily a correlation between contact ion pair formation and stronger binding affinity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...