Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273914

RESUMO

Two messenger RNA (mRNA)-based vaccines are widely used globally to prevent coronavirus disease 2019 (COVID-19). Both vaccine formulations contain PEGylated lipids in their composition, in the form of polyethylene glycol [PEG] 2000 dimyristoyl glycerol for mRNA-1273, and 2 [(polyethylene glycol)-2000]-N,N-ditetradecylacetamide for BNT162b2. It is known that some PEGylated drugs and products for human use that contain PEG, are capable of eliciting immune responses, leading to detectable PEG-specific antibodies in serum. In this study, we determined if any of the components of mRNA-1273 or BNT162b2 formulations elicited PEG-specific antibody responses in serum by enzyme linked immunosorbent assay (ELISA). We detected an increase in the reactivity to mRNA vaccine formulations in mRNA-1273 but not BNT162b2 vaccinees sera in a prime-boost dependent manner. Furthermore, we observed the same pattern of reactivity against irrelevant lipid nanoparticles from an influenza virus mRNA formulation and found that the reactivity of such antibodies correlated well with antibody levels against high and low molecular weight PEG. Using sera from participants selected based on the vaccine-associated side effects experienced after vaccination, including delayed onset, injection site or severe allergic reactions, we found no obvious association between PEG antibodies and adverse reactions. Overall, our data shows a differential induction of anti-PEG antibodies by mRNA-1273 and BNT162b2. The clinical relevance of PEG reactive antibodies induced by administration of the mRNA-1273 vaccine, and the potential interaction of these antibodies with other PEGylated drugs remains to be explored.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20102236

RESUMO

BackgroundSince December 2019, Coronavirus Disease 2019 (COVID-19) has become a global pandemic, causing mass morbidity and mortality. Prior studies in other respiratory infections suggest that convalescent plasma transfusion may offer benefit to some patients. Here, the outcomes of thirty-nine hospitalized patients with severe to life-threatening COVID-19 who received convalescent plasma transfusion were compared against a cohort of retrospectively matched controls. MethodsPlasma recipients were selected based on supplemental oxygen needs at the time of enrollment and the time elapsed since the onset of symptoms. Recipients were transfused with convalescent plasma from donors with a SARS-CoV-2 (severe acute respiratory disease coronavirus 2) anti-spike antibody titer of 31:320 dilution. Matched control patients were retrospectively identified within the electronic health record database. Supplemental oxygen requirements and survival were compared between plasma recipients and controls. ResultsConvalescent plasma recipients were more likely than control patients to remain the same or have improvements in their supplemental oxygen requirements by post-transfusion day 14, with an odds ratio of 0.86 (95% CI: 0.75[~]0.98; p = 0.028). Plasma recipients also demonstrated improved survival, compared to control patients (log-rank test: p = 0.039). In a covariates-adjusted Cox model, convalescent plasma transfusion improved survival for non-intubated patients (hazard ratio 0.19 (95% CI: 0.05 [~]0.72); p = 0.015), but not for intubated patients (1.24 (0.33[~]4.67); p = 0.752). ConclusionsConvalescent plasma transfusion is a potentially efficacious treatment option for patients hospitalized with COVID-19; however, these data suggest that non-intubated patients may benefit more than those requiring mechanical ventilation.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20073411

RESUMO

Coronavirus 2019 (COVID-19), caused by the SARS-CoV-2 virus, has become the deadliest pandemic in modern history, reaching nearly every country worldwide and overwhelming healthcare institutions. As of April 20, there have been more than 2.4 million confirmed cases with over 160,000 deaths. Extreme case surges coupled with challenges in forecasting the clinical course of affected patients have necessitated thoughtful resource allocation and early identification of high-risk patients. However, effective methods for achieving this are lacking. In this paper, we use electronic health records from over 3,055 New York City confirmed COVID-19 positive patients across five hospitals in the Mount Sinai Health System and present a decision tree-based machine learning model for predicting in-hospital mortality and critical events. This model is first trained on patients from a single hospital and then externally validated on patients from four other hospitals. We achieve strong performance, notably predicting mortality at 1 week with an AUC-ROC of 0.84. Finally, we establish model interpretability by calculating SHAP scores to identify decisive features, including age, inflammatory markers (procalcitonin and LDH), and coagulation parameters (PT, PTT, D-Dimer). To our knowledge, this is one of the first models with external validation to both predict outcomes in COVID-19 patients with strong validation performance and identify key contributors in outcome prediction that may assist clinicians in making effective patient management decisions. One-Sentence SummaryWe identify clinical features that robustly predict mortality and critical events in a large cohort of COVID-19 positive patients in New York City.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20062117

RESUMO

BackgroundThe coronavirus 2019 (Covid-19) pandemic is a global public health crisis, with over 1.6 million cases and 95,000 deaths worldwide. Data are needed regarding the clinical course of hospitalized patients, particularly in the United States. MethodsDemographic, clinical, and outcomes data for patients admitted to five Mount Sinai Health System hospitals with confirmed Covid-19 between February 27 and April 2, 2020 were identified through institutional electronic health records. We conducted a descriptive study of patients who had in-hospital mortality or were discharged alive. ResultsA total of 2,199 patients with Covid-19 were hospitalized during the study period. As of April 2nd, 1,121 (51%) patients remained hospitalized, and 1,078 (49%) completed their hospital course. Of the latter, the overall mortality was 29%, and 36% required intensive care. The median age was 65 years overall and 75 years in those who died. Pre-existing conditions were present in 65% of those who died and 46% of those discharged. In those who died, the admission median lymphocyte percentage was 11.7%, D-dimer was 2.4 ug/ml, C-reactive protein was 162 mg/L, and procalcitonin was 0.44 ng/mL. In those discharged, the admission median lymphocyte percentage was 16.6%, D-dimer was 0.93 ug/ml, C-reactive protein was 79 mg/L, and procalcitonin was 0.09 ng/mL. ConclusionsThis is the largest and most diverse case series of hospitalized patients with Covid-19 in the United States to date. Requirement of intensive care and mortality were high. Patients who died typically had pre-existing conditions and severe perturbations in inflammatory markers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...