Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 494(7437): 345-8, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23407492

RESUMO

Sex pheromones play a pivotal role in the communication of many sexually reproducing organisms. Accordingly, speciation is often accompanied by pheromone diversification enabling proper mate finding and recognition. Current theory implies that chemical signals are under stabilizing selection by the receivers who thereby maintain the integrity of the signals. How the tremendous diversity of sex pheromones seen today evolved is poorly understood. Here we unravel the genetics of a newly evolved pheromone phenotype in wasps and present results from behavioural experiments indicating how the evolution of a new pheromone component occurred in an established sender-receiver system. We show that male Nasonia vitripennis evolved an additional pheromone compound differing only in its stereochemistry from a pre-existing one. Comparative behavioural studies show that conspecific females responded neutrally to the new pheromone phenotype when it evolved. Genetic mapping and gene knockdown show that a cluster of three closely linked genes accounts for the ability to produce this new pheromone phenotype. Our data suggest that new pheromone compounds can persist in a sender's population, without being selected against by the receiver and without the receiver having a pre-existing preference for the new pheromone phenotype, by initially remaining unperceived. Our results thus contribute valuable new insights into the evolutionary mechanisms underlying the diversification of sex pheromones. Furthermore, they indicate that the genetic basis of new pheromone compounds can be simple, allowing them to persist long enough in a population for receivers to evolve chemosensory adaptations for their exploitation.


Assuntos
Evolução Biológica , Preferência de Acasalamento Animal/fisiologia , Atrativos Sexuais/metabolismo , Vespas/genética , Vespas/fisiologia , Animais , Feminino , Técnicas de Silenciamento de Genes , Especiação Genética , Lactonas/química , Lactonas/metabolismo , Masculino , Dados de Sequência Molecular , Filogenia , Quinazolinas/química , Quinazolinas/metabolismo , Seleção Genética , Atrativos Sexuais/química , Especificidade da Espécie , Vespas/química
2.
PLoS One ; 5(1): e8597, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20087411

RESUMO

Homologous meiotic recombination occurs in most sexually reproducing organisms, yet its evolutionary advantages are elusive. Previous research explored recombination in the honeybee, a eusocial hymenopteran with an exceptionally high genome-wide recombination rate. A comparable study in a non-social member of the Hymenoptera that would disentangle the impact of sociality from Hymenoptera-specific features such as haplodiploidy on the evolution of the high genome-wide recombination rate in social Hymenoptera is missing. Utilizing single-nucleotide polymorphisms (SNPs) between two Nasonia parasitoid wasp genomes, we developed a SNP genotyping microarray to infer a high-density linkage map for Nasonia. The map comprises 1,255 markers with an average distance of 0.3 cM. The mapped markers enabled us to arrange 265 scaffolds of the Nasonia genome assembly 1.0 on the linkage map, representing 63.6% of the assembled N. vitripennis genome. We estimated a genome-wide recombination rate of 1.4-1.5 cM/Mb for Nasonia, which is less than one tenth of the rate reported for the honeybee. The local recombination rate in Nasonia is positively correlated with the distance to the center of the linkage groups, GC content, and the proportion of simple repeats. In contrast to the honeybee genome, gene density in the parasitoid wasp genome is positively associated with the recombination rate; regions of low recombination are characterized by fewer genes with larger introns and by a greater distance between genes. Finally, we found that genes in regions of the genome with a low recombination frequency tend to have a higher ratio of non-synonymous to synonymous substitutions, likely due to the accumulation of slightly deleterious non-synonymous substitutions. These findings are consistent with the hypothesis that recombination reduces interference between linked sites and thereby facilitates adaptive evolution and the purging of deleterious mutations. Our results imply that the genomes of haplodiploid and of diploid higher eukaryotes do not differ systematically in their recombination rates and associated parameters.


Assuntos
Diploide , Genoma , Recombinação Genética , Vespas/genética , Animais , Ligação Genética , Polimorfismo de Nucleotídeo Único
3.
Genetics ; 178(1): 413-26, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18202384

RESUMO

The haplodiploid wasp genus Nasonia is a promising model for studying the evolution of genic incompatibilities due to the existence of interfertile species and haploid males. The latter allows for significantly reducing the sample size required to detect and map recessive dysfunctional genic interactions. We exploited these features to study the genetics of intrinsic hybrid inviability in male F2 hybrids of Nasonia giraulti and N. vitripennis. Analyzing marker segregation in 225 hybrid embryos, we inferred a linkage map with 38 framework markers. The markers were tested for marker transmission ratio distortion (MTRD) and interchromosomal linkage disequilibrium in populations of embryonic and adult hybrids. We found evidence for four transmission ratio distorting loci (TRDL). Three TRDL showed a deficit of the N. giraulti allele in hybrids with N. vitripennis cytoplasm. A separate TRDL exhibited a deficiency of the N. vitripennis allele in hybrids with N. giraulti cytoplasm. We ascribe the observed MTRD in adult hybrids to cytonuclear genic incompatibilities causing differential mortality during development since hybrid embryos did not show MTRD. The identified cytonuclear genic incompatibilities in F2 hybrids with N. vitripennis cytoplasm account for most of the intrinsic hybrid inviability in this cross. The high mortality rate in F2 hybrids with N. giraulti cytoplasm cannot be explained by the single identified TRDL alone, however.


Assuntos
Núcleo Celular/genética , Hibridização Genética , Vespas/citologia , Vespas/genética , Alelos , Animais , Mapeamento Cromossômico , Cromossomos/genética , Marcadores Genéticos , Genoma de Inseto , Desequilíbrio de Ligação/genética , Masculino , Dados de Sequência Molecular , Mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...