Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 173(Pt 1): 113276, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803588

RESUMO

Bagging is an effective cultivation strategy to produce attractive and pollution-free kiwifruit. However, the effect and metabolic regulatory mechanism of bagging treatment on kiwifruit quality remain unclear. In this study, transcriptome and metabolome analyses were conducted to determine the regulatory network of the differential metabolites and genes after bagging. Using outer and inner yellow single-layer fruit bags, we found that bagging treatment improved the appearance of kiwifruit, increased the soluble solid content (SSC) and carotenoid and anthocyanin levels, and decreased the chlorophyll levels. We also identified 41 differentially expressed metabolites and 897 differentially expressed genes (DEGs) between the bagged and control 'Hongyang' fruit. Transcriptome and metabolome analyses revealed that the increase in SSC after bagging treatment was mainly due to the increase in D-glucosamine metabolite levels and eight DEGs involved in amino sugar and nucleotide sugar metabolic pathways. A decrease in glutamyl-tRNA reductase may be the main reason for the decrease in chlorophyll. Downregulation of lycopene epsilon cyclase and 9-cis-epoxycarotenoid dioxygenase increased carotenoid levels. Additionally, an increase in the levels of the taxifolin-3'-O-glucoside metabolite, flavonoid 3'-monooxygenase, and some transcription factors led to the increase in anthocyanin levels. This study provides novel insights into the effects of bagging on the appearance and internal quality of kiwifruit and enriches our theoretical knowledge on the regulation of color pigment synthesis in kiwifruit.


Assuntos
Actinidia , Transcriptoma , Frutas/genética , Frutas/metabolismo , Antocianinas/metabolismo , Metaboloma , Actinidia/genética , Actinidia/metabolismo , Carotenoides/metabolismo , Clorofila
2.
PLoS One ; 18(7): e0287969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37450442

RESUMO

The rhizome is an economically important part of ginger (Zingiber officinale Rosc.). However, the mechanism of ginger rhizome enlargement remains unclear. In this study, we performed an integrated analysis of the hormone content and transcriptome of ginger at three rhizome enlargement stages: initial enlargement (S1), middle enlargement (S2), and peak enlargement (S3). With rhizome enlargement, the levels of the hormones zeatin (ZT), gibberellic acid (GA), indole acetic acid (IAA), and jasmonic acid (JA) were significantly increased, and this increase was positively correlated with rhizome diameter. Transcriptomic analysis identified a large number of differentially expressed genes (DEGs); the number of DEGs were 2,206 in the transition from S1 to S2, and 1,151 in the transition from S2 to S3. The expression of several genes related to hormone biosynthesis and signalling and cell division or expansion, and transcription factors was significantly altered, which suggests that these genes play essential roles in rhizome enlargement. The results of correlation analysis suggested that the process of ginger rhizome enlargement may be primarily related to the regulation of endogenous cytokinin, GA3, auxin, and JA biosynthesis pathways and signal transduction; GRAS, HB, MYB, MYB122, bZIP60, ARF1, ARF2, E2FB1, and E2FB2, which may regulate the expression of rhizome formation-related genes; and CYC2, CDKB1, CDKB2, EXPA1, and XTH7, which may mediate cell division and expansion. These results provide gene resources and information that will be useful for the molecular breeding in ginger.


Assuntos
Rizoma , Zingiber officinale , Rizoma/genética , Rizoma/metabolismo , Zingiber officinale/genética , Perfilação da Expressão Gênica , Transcriptoma , Hormônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...