Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cancer Res Clin Oncol ; 140(8): 1261-70, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24770633

RESUMO

OBJECTIVE: Wnt signalling pathways regulate proliferation, motility and survival in a variety of human cell types. Dickkopf 1 (DKK1) gene codes for a secreted Wnt inhibitory factor. It functions as tumour suppressor gene in breast cancer and as a pro-apoptotic factor in glioma cells. In this study, we aimed to demonstrate whether the different expression of DKK1 in human glioma-derived cells is dependent on microenvironmental factors like hypoxia and regulated by the intercellular crosstalk with bone-marrow-derived mesenchymal stem cells (bmMSCs). METHODS: Glioma cell line U87-MG, three cell lines from human glioblastoma grade IV (glioma-derived mesenchymal stem cells) and three bmMSCs were selected for the experiment. The expression of DKK1 in cell lines under normoxic/hypoxic environment or co-culture condition was measured using real-time PCR and enzyme-linked immunoadsorbent assay. The effect of DKK1 on cell migration and proliferation was evaluated by in vitro wound healing assays and sulphorhodamine assays, respectively. RESULTS: Glioma-derived cells U87-MG displayed lower DKK1 expression compared with bmMSCs. Hypoxia led to an overexpression of DKK1 in bmMSCs and U87-MG when compared to normoxic environment, whereas co-culture of U87-MG with bmMSCs induced the expression of DKK1 in both cell lines. Exogenous recombinant DKK1 inhibited cell migration on all cell lines, but did not have a significant effect on cell proliferation of bmMSCs and glioma cell lines. CONCLUSION: In this study, we showed for the first time that the expression of DKK1 was hypoxia dependent in human malignant glioma cell lines. The induction of DKK1 by intracellular crosstalk or hypoxia stimuli sheds light on the intense adaption of glial tumour cells to environmental alterations.


Assuntos
Comunicação Celular , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Via de Sinalização Wnt , Hipóxia Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Expressão Gênica , Glioma , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neoplásicas/metabolismo
2.
Anticancer Res ; 32(11): 4971-82, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23155267

RESUMO

BACKGROUND: Malignant gliomas are highly-vascularised tumours. Neoangiogenesis is a crucial factor in the malignant behaviour of tumour and prognosis of patients. Several mechanisms are suspected to lead to neoangiogenesis, one of them is the recruitment of multipotent progenitor cells towards the tumour. Factors such as Vascular endothelial growth factor-A (VEGF-A) were described to recruit bone marrow-derived endothelial progenitor cells (EPCs) to the glioma stroma and vasculature. Little is known about isolating EPCs from normal or malignant tissues. MATERIALS AND METHODS: In this study, we addressed the topic of characterization of tumour-isolated EPCs and re-defined the clonal relationship between EPCs and hematopoietic stem cells (HSCs) in gliomas. We first checked public gene expression data of glioma for putative marker expression, pointing towards a prevalence of EPCs and HSCs in glioma. Immunohistochemical staining of glioma tissue confirmed the higher expression of these progenitor markers in glioma tissue. EPCs and HSCs were consequently isolated and characterized at the phenotypic and functional levels. We applied a new isolation method, for the first time, to specimen from patients with high grade glioma including seven grade IV glioblastoma, five-grade III astrocytoma, and three grade III oligoastrocytoma. RESULTS: In all samples, we were able to isolate the tumour-derived EPCs, which were positive for characteristic markers: CD31, CD34 and VEGFR2. The EPCs formed capillary networks in vitro and had the ability to take up acetylated low-density lipoprotein. Glioma-derived HSCs were positive for CD34 and CD45, but they were unable to form a capillary network in vitro. These findings on tumour-derived EPCs/HSCs were in concordance with the results, derived from peripheral blood of healthy volunteers. CONCLUSION: In our study, we established a new method for EPC/HSC isolation from human gliomas, defined the contribution of EPCs and HSCs to the tumour tissue, and highlighted the intense in vivo tumour host interaction.


Assuntos
Neoplasias Encefálicas/patologia , Separação Celular/métodos , Células Endoteliais/citologia , Glioma/patologia , Células-Tronco Hematopoéticas/citologia , Células da Medula Óssea/citologia , Humanos , Imuno-Histoquímica , Neovascularização Patológica/patologia , Células-Tronco/citologia
3.
PLoS One ; 7(1): e30429, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22276196

RESUMO

Krüppel-like factor 8 (KLF8) has only recently been identified to be involved in tumor cell proliferation and invasion of several different tumor entities like renal cell carcinoma, hepatocellular carcinoma and breast cancer. In the present study, we show for the first time the expression of KLF8 in gliomas of different WHO grades and its functional impact on glioma cell proliferation. In order to get information about KLF8-mRNA regulation qPCR was performed and did not reveal any significant difference in samples (n = 10 each) of non-neoplastic brain (NNB), low-grade gliomas (LGG, WHO°II) and glioblastomas (GBM, WHO°IV). Immunohistochemistry of tissue samples (n = 7 LGG, 11 AA and 12 GBM) did not show any significant difference in the fraction of KLF8-immunopositive cells of all analyzed cells in LGG (87%), AA (80%) or GBM (89%). Tissue samples from cerebral breast cancer metastasis, meningiomas but also non-neoplastic brain demonstrated comparable relative cell counts as well. Moreover, there was no correlation between KLF8 expression and the expression pattern of the assumed proliferation marker Ki67, which showed high variability between different tumor grade (9% (LGG), 6% (AA) and 15% (GBM) of Ki67-immunopositive cells). Densitometric analysis of Western blotting revealed that the relative amount of KLF8-protein did also not differ between the highly aggressive and proliferative GBM (1.05) compared to LGG (0.93; p<0.05, studens t-test). As demonstrated for some other non-glial cancer entities, KLF8-knockdown by shRNA in U87-MG cells confirmed its functional relevance, leading to an almost complete loss of tumor cell proliferation. Selective blocking of KLF8 might represent a novel anti-proliferative treatment strategy for malignant gliomas. Yet, its simultaneous expression in non-proliferating tissues could hamper this approach.


Assuntos
Glioma/metabolismo , Glioma/patologia , Proteínas Repressoras/metabolismo , Adulto , Idoso , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/genética , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Fatores de Transcrição Kruppel-Like , Masculino , Pessoa de Meia-Idade , RNA Interferente Pequeno , Proteínas Repressoras/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA