Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1680, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243038

RESUMO

The magnetic properties of Co(10 Å)/NiO(40 Å)/Fe trilayer epitaxially grown on W(110) substrate were investigated with use of x-ray magnetic linear dichroism (XMLD) and x-ray magnetic circular dichroism (XMCD). We showed that magnetic anisotropy of Fe film that can be controlled by a thickness-driven spin reorientation transition is transferred via interfacial exchange coupling not only to NiO layer but further to ferromagnetic Co overlayer as well. Similarly, a temperature driven spin reorientation of Fe sublayer induces a reorientation of NiO spin orientation and simultaneous switching of the Co magnetization direction. Finally, by element specific XMCD and XMLD magnetic hysteresis loop measurements we proved that external magnetic field driven reorientation of Fe and Co magnetizations as well as NiO Néel vector are strictly correlated and magnetic anisotropy fields of Fe and Co sublayers are identical despite the different crystal structures.

2.
J Phys Condens Matter ; 35(49)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37582382

RESUMO

L3M2,3M2,3Auger transition is measured near the L3resonance of ferromagnetic Fe films on W(110). The kinetic energies of the Auger peaks display the typical Raman behaviour for photon energies well below the absorption threshold, where the Auger energy follows the changes in the photon energy. Classical Auger behaviour with constant kinetic energy sets in at about 1.5 eV below the L3resonance independently from the number of Fe layers down to the monolayer thickness. Strong x-ray circular magnetic dichroism is observed at the L3edge in the entire L3M2,3M2,3Auger spectrum. Different Auger features originating from the final state with two 3p core holes show slight variations in the dichroic signal, which is attributed to the exchange interaction between the core holes and the valence band. Finally, XMCD-PEEM magnetic domain imaging using Auger electrons is demonstrated with a high level of contrast and lateral resolution approaching that of imaging with secondary photoelectrons.

3.
Sci Rep ; 13(1): 4824, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964276

RESUMO

We report on the magnetic properties of antiferromagnetic NiO(001) thin films in epitaxially grown NiO/MgO(dMgO)/Cr/MgO(001) system for different thicknesses of MgO, dMgO. Results of X-ray Magnetic Linear Dichroism show that together with an increase of dMgO, rotation of NiO spins from in-plane towards out-of-plane direction occurs. Furthermore, we investigated how the proximity of Fe modifies the magnetic state of NiO in Fe/NiO/MgO(dMgO)/Cr/MgO(001). We proved the existence of a multidomain state in NiO as a result of competition between the ferromagnet/antiferromagnet exchange coupling and strain exerted on the NiO by the MgO buffer layer.

4.
Phys Chem Chem Phys ; 25(5): 3806-3814, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36645158

RESUMO

We investigate the experimentally challenging CrCl3 surface by photon energy dependent photoemission (PE). The core and valence electrons after cleavage of a single crystal, either in a ultra-high vacuum (UHV) or in air, are studied by keeping the samples at 150 °C, aiming at confirming the atomic composition with respect to the expected bulk atomic structure. A common spectroscopic denominator revealed by data is the presence of a stable, but only partially ordered Cl-O-Cr surface. The electronic core levels (Cl 2p, Cr 2p and 3p), the latter ones of cumbersome component determination, allowed us to quantify the electron charge transfer to the Cr atom as a net result of this modification and the increased exchange interaction between metal and ligand atoms. In particular, the analysis of multiplet components by the CMT4XPS code evidenced the charge transfer to be favored, and similarly the reduced crystal field due to the established polarization field. Though it is often claimed that a significant amount of Cl and Cr atomic vacancies has to be included, such a possibility can be excluded on the basis of the sign and the importance of the shift in the binding energy of core level electrons. The present methodological approach can be of great impact to quantify the structure of ordered sub-oxide phases occurring in mono or bi-layer Cr trihalides.

5.
Nanoscale ; 13(48): 20704, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34874396

RESUMO

Correction for 'Influence of 4f filling on electronic and magnetic properties of rare earth-Au surface compounds' by L. Fernandez et al., Nanoscale, 2020, 12, 22258-22267, DOI: 10.1039/D0NR04964F.

6.
Nanoscale ; 12(43): 22258-22267, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33146198

RESUMO

One-atom-thick rare-earth/noble metal (RE-NM) compounds are attractive materials to investigate two-dimensional magnetism, since they are easy to synthesize into a common RE-NM2 structure with high crystal perfection. Here we perform a comparative study of the GdAu2, HoAu2, and YbAu2 monolayer compounds grown on Au(111). We find the same atomic lattice quality and moiré superlattice periodicity in the three cases, but different electronic properties and magnetism. The YbAu2 monolayer reveals the characteristic electronic signatures of a mixed-valence configuration in the Yb atom. In contrast, GdAu2 and HoAu2 show the trivalent character of the rare-earth and ferromagnetic transitions below 22 K. Yet, the GdAu2 monolayer has an in-plane magnetic easy-axis, versus the out-of-plane one in HoAu2. The electronic bands of the two trivalent compounds are very similar, while the divalent YbAu2 monolayer exhibits different band features. In the latter, a strong 4f-5d hybridization is manifested in neatly resolved avoided crossings near the Fermi level. First principles theory points to a residual presence of empty 4f states, explaining the fluctuating valence of Yb in the YbAu2 monolayer.

7.
Nat Commun ; 10(1): 505, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705281

RESUMO

Many properties of real materials can be modeled using ab initio methods within a single-particle picture. However, for an accurate theoretical treatment of excited states, it is necessary to describe electron-electron correlations including interactions with bosons: phonons, plasmons, or magnons. In this work, by comparing spin- and momentum-resolved photoemission spectroscopy measurements to many-body calculations carried out with a newly developed first-principles method, we show that a kink in the electronic band dispersion of a ferromagnetic material can occur at much deeper binding energies than expected (Eb = 1.5 eV). We demonstrate that the observed spectral signature reflects the formation of a many-body state that includes a photohole bound to a coherent superposition of renormalized spin-flip excitations. The existence of such a many-body state sheds new light on the physics of the electron-magnon interaction which is essential in fields such as spintronics and Fe-based superconductivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...