Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276289

RESUMO

High temperatures associated with climate change may increase the severity of plant diseases. This study investigated the effect of heat shock treatment on host and non-host barley powdery mildew interactions using brassinosteroid (BR) mutants of barley. Brassinosteroids are plant steroid hormones, but so far little is known about their role in plant-fungal interactions. Wild type barley cultivar Bowman and its near-isogenic lines with disturbances in BR biosynthesis or signalling showed high compatibility to barley powdery mildew race A6, while cultivar Delisa and its BR-deficient mutants 522DK and 527DK were fully incompatible with this pathogen (host plant-pathogen interactions). On the other hand, Bowman and its mutants were highly resistant to wheat powdery mildew, representing non-host plant-pathogen interactions. Heat pre-treatment induced shifts in these plant-pathogen interactions towards higher susceptibility. In agreement with the more severe disease symptoms, light microscopy showed a decrease in papillae formation and hypersensitive response, characteristic of incompatible interactions, when heat pre-treatment was applied. Mutant 527DK, but not 522DK, maintained high resistance to barley powdery mildew race A6 despite heat pre-treatment. By 10 days after heat treatment and infection, a noticeable shift became apparent in the chlorophyll a fluorescence and in various leaf reflectance parameters at all genotypes.

2.
Biomedicines ; 11(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36830844

RESUMO

Metabolic syndrome is a complex disease state, which appears mostly as a consequence of an unhealthy, sedentary lifestyle. Metabolic complications include insulin resistance (IR), diabetes, dyslipidemia, hypertension, and atherosclerosis, impairing life standards and reducing life expectancy. The endocannabinoid system (ECS) has an important role in signalization processes, not only in the central nervous system, but also in the peripheral tissues. Several physiological functions are affected, and overexpression or downregulation contributes to several diseases. A better understanding of the functions of cannabinoid (CB) receptors may propose potential therapeutic effects by influencing receptor signaling and enzymes involved in downstream pathways. In this review, we summarize recent information regarding the roles of the ECS and the CB1 receptor signaling in the physiology and pathophysiology of energy and metabolic homeostasis, in the development of obesity by enhancing food intake, upregulating energy balance and fat accumulation, increasing lipogenesis and glucose production, and impairing insulin sensitivity and secretion. By analyzing the roles of the ECS in physiological and pathophysiological mechanisms, we introduce some recently identified signaling pathways in the mechanism of the pathogenesis of metabolic syndrome. Our review emphasizes that the presence of such recently identified ECS signaling steps raises new therapeutic potential in the treatment of complex metabolic diseases such as diabetes, insulin resistance, obesity, and hypertension.

3.
Sci Rep ; 11(1): 20680, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667194

RESUMO

Upon virus infections, the rapid and comprehensive transcriptional reprogramming in host plant cells is critical to ward off virus attack. To uncover genes and defense pathways that are associated with virus resistance, we carried out the transcriptome-wide Illumina RNA-Seq analysis of pepper leaves harboring the L3 resistance gene at 4, 8, 24 and 48 h post-inoculation (hpi) with two tobamoviruses. Obuda pepper virus (ObPV) inoculation led to hypersensitive reaction (incompatible interaction), while Pepper mild mottle virus (PMMoV) inoculation resulted in a systemic infection without visible symptoms (compatible interaction). ObPV induced robust changes in the pepper transcriptome, whereas PMMoV showed much weaker effects. ObPV markedly suppressed genes related to photosynthesis, carbon fixation and photorespiration. On the other hand, genes associated with energy producing pathways, immune receptors, signaling cascades, transcription factors, pathogenesis-related proteins, enzymes of terpenoid biosynthesis and ethylene metabolism as well as glutathione S-transferases were markedly activated by ObPV. Genes related to photosynthesis and carbon fixation were slightly suppressed also by PMMoV. However, PMMoV did not influence significantly the disease signaling and defense pathways. RNA-Seq results were validated by real-time qPCR for ten pepper genes. Our findings provide a deeper insight into defense mechanisms underlying tobamovirus resistance in pepper.


Assuntos
Piper nigrum/genética , Folhas de Planta/genética , Folhas de Planta/virologia , Tobamovirus/genética , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Fotossíntese/genética , Piper nigrum/virologia , Doenças das Plantas/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , RNA-Seq/métodos , Nicotiana/genética , Nicotiana/virologia
4.
Plant Physiol Biochem ; 148: 347-358, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32004918

RESUMO

The replication of positive strand RNA viruses in plant cells is markedly influenced by the desaturation status of fatty acid chains in lipids of intracellular plant membranes. At present, little is known about the role of lipid desaturation in the replication of tobamoviruses. Therefore, we investigated the expression of fatty acid desaturase (FAD) genes and the fatty acid composition of pepper leaves inoculated with two different tobamoviruses. Obuda pepper virus (ObPV) inoculation induced a hypersensitive reaction (incompatible interaction) while Pepper mild mottle virus (PMMoV) inoculation caused a systemic infection (compatible interaction). Changes in the expression of 16 FADs were monitored in pepper leaves following ObPV and PMMoV inoculations. ObPV inoculation rapidly and markedly upregulated seven Δ12-FADs that encode enzymes putatively located in the endoplasmic reticulum membrane. In contrast, PMMoV inoculation resulted in a weaker but rapid upregulation of two Δ12-FADs and a Δ15-FAD. The expression of genes encoding plastidial FADs was not influenced neither by ObPV nor by PMMoV. In accordance with gene expression results, a significant accumulation of linoleic acid was observed by gas chromatography-mass spectrometry in ObPV-, but not in PMMoV-inoculated leaves. ObPV inoculation led to a marked accumulation of H2O2 in the inoculated leaves. Therefore, the effect of H2O2 treatments on the expression of six tobamovirus-inducible FADs was also studied. The expression of these FADs was upregulated to different degrees by H2O2 that correlated with ObPV-inducibility of these FADs. These results underline the importance of further studies on the role of pepper FADs in pepper-tobamovirus interactions.


Assuntos
Capsicum , Ácidos Graxos Dessaturases , Regulação da Expressão Gênica de Plantas , Tobamovirus , Capsicum/enzimologia , Capsicum/virologia , Ácidos Graxos Dessaturases/genética , Peróxido de Hidrogênio/metabolismo , Folhas de Planta/química , Folhas de Planta/enzimologia , Folhas de Planta/virologia , Tobamovirus/fisiologia
5.
Plant Physiol Biochem ; 119: 232-239, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28917142

RESUMO

The interactions of powdery mildew (Golovinomyces orontii) and Tobacco mosaic virus (TMV) with tobacco lines having down or upregulated antioxidants were investigated. Xanthi-nc, its salicylic acid-deficient NahG mutant, a paraquat-sensitive Samsun (PS) and its paraquat tolerant (PT) mutant were used. Cell membrane damage caused by H2O2 was significantly higher in NahG than Xanthi, whereas it was lower in PT than in PS. Leakage of ions from PT was reduced by the powdery mildew infection. On the other hand TMV inoculation led to a 6-fold and 2-fold elevation of ion leakage from hypersensitive resistant NahG and Xanthi leaves, respectively, whereas ion leakage increased slightly from susceptible PS leaves. G. orontii infection induced ribonuclease (RNase) enzyme activity in extracts from Xanthi and NahG (about 200-250% increase) and weakly (about 20-30% increase) from PS and PT lines. Pre-treatment with protein kinase inhibitor staurosporine or protein phosphatase inhibitor okadaic acid very strongly inhibited mildew development on tobacco lines. Our experiments suggest that protein kinases inhibited by staurosporine seem to be important factors, while protein phosphatases inhibited by okadaic acid play less significant role in TMV-induced lesion development. Both powdery mildew and TMV infections up-regulated the expression of PR-1b, PR-1c and WRKY12 genes in all tobacco lines to various extents.


Assuntos
Antioxidantes/metabolismo , Ascomicetos , Genótipo , Nicotiana , Doenças das Plantas , Folhas de Planta , Vírus do Mosaico do Tabaco , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/virologia , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia , Nicotiana/virologia
6.
Plant Physiol Biochem ; 109: 355-364, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27810675

RESUMO

Phytohormone levels and the expression of genes encoding key enzymes participating in hormone biosynthetic pathways were investigated in pepper leaves inoculated with two different tobamoviruses. Obuda pepper virus (ObPV) inoculation led to the development of hypersensitive reaction (incompatible interaction), while Pepper mild mottle virus (PMMoV) inoculation resulted in a systemic, compatible interaction. ObPV-inoculation markedly increased not only the levels of salicylic acid (SA) (73-fold) and jasmonic acid (8-fold) but also those of abscisic acid, indole-3-acetic acid, indole-3-butyric acid, cis-zeatin, cis-zeatin-9-riboside and trans-zeatin-9-riboside in the inoculated pepper leaves 3 days post inoculation. PMMoV infection increased only the contents of gibberellic acid and SA. Hormone contents did not change significantly after ObPV or PMMoV infection in non-infected upper leaves 20 days post inoculation. Concentrations of some brassinosteroids (BRs) and progesterone increased both in ObPV- and PMMoV inoculated leaves. ObPV inoculation markedly induced the expression of three phenylalanine ammonia-lyase (PAL) and a 1-aminocyclopropane-1-carboxylate oxidase (ACO) genes, while that of an isochorismate synthase (ICS) gene was not modified. PMMoV inoculation did not alter the expression of PAL and ICS genes but induced the transcript abundance of ACO although later than ObPV. Pre-treatment of pepper leaves with exogenous 24-epi-brassinolide (24-epi-BR) prior to ObPV-inoculation strongly mitigated the visible symptoms caused by ObPV. In addition, 24-epi-BR pre-treatment markedly altered the level of several hormones in pepper leaves following ObPV-inoculation. These data indicate that ObPV- and PMMoV-inoculations lead to intricate but well harmonized hormonal responses that are largely determined by the incompatible or compatible nature of plant-virus interactions.


Assuntos
Capsicum/metabolismo , Capsicum/virologia , Interações Hospedeiro-Patógeno/fisiologia , Doenças das Plantas/virologia , Tobamovirus/patogenicidade , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Capsicum/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Interações Hospedeiro-Patógeno/genética , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Progesterona/metabolismo , Transdução de Sinais , Especificidade da Espécie , Tobamovirus/classificação
7.
Plant Physiol Biochem ; 83: 267-78, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25194777

RESUMO

Leaves of a pepper cultivar harboring the L(3) resistance gene were inoculated with Obuda pepper virus (ObPV), which led to the appearance of hypersensitive necrotic lesions approx. 72 h post-inoculation (hpi) (incompatible interaction), or with Pepper mild mottle virus (PMMoV) that caused no visible symptoms on the inoculated leaves (compatible interaction). ObPV inoculation of leaves resulted in ion leakage already 18 hpi, up-regulation of a pepper carotenoid cleavage dioxygenase (CCD) gene from 24 hpi, heat emission and declining chlorophyll a content from 48 hpi, and partial desiccation from 72 hpi. After the appearance of necrotic lesions a strong inhibition of photochemical energy conversion was observed, which led to photochemically inactive leaf areas 96 hpi. However, leaf tissues adjacent to these inactive areas showed elevated ΦPSII and Fv/Fm values proving the advantage of chlorophyll a imaging technique. PMMoV inoculation also led to a significant rise of ion leakage and heat emission, to the up-regulation of the pepper CCD gene as well as to decreased PSII efficiency, but these responses were much weaker than in the case of ObPV inoculation. Chlorophyll b and total carotenoid contents as measured by spectrophotometric methods were not significantly influenced by any virus inoculations when these pigment contents were calculated on leaf surface basis. On the other hand, near-infrared FT-Raman spectroscopy showed an increase of carotenoid content in ObPV-inoculated leaves suggesting that the two techniques detect different sets of compounds.


Assuntos
Capsicum , Clorofila , Fluorescência , Folhas de Planta , Tobamovirus , Capsicum/química , Capsicum/metabolismo , Capsicum/virologia , Clorofila/química , Clorofila/metabolismo , Clorofila A , Dioxigenases/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/metabolismo , Análise Espectral Raman , Tobamovirus/química , Tobamovirus/metabolismo
8.
Plant Physiol Biochem ; 59: 44-54, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22122784

RESUMO

Sufficient sulfate supply has been linked to the development of sulfur induced resistance or sulfur enhanced defense (SIR/SED) in plants. In this study we investigated the effects of sulfate (S) supply on the response of genetically resistant tobacco (Nicotiana tabacum cv. Samsun NN) to Tobacco mosaic virus (TMV). Plants grown with sufficient sulfate (+S plants) developed significantly less necrotic lesions during a hypersensitive response (HR) when compared to plants grown without sulfate (-S plants). In +S plants reduced TMV accumulation was evident on the level of viral RNA. Enhanced virus resistance correlated with elevated levels of cysteine and glutathione and early induction of a Tau class glutathione S-transferase and a salicylic acid-binding catalase gene. These data indicate that the elevated antioxidant capacity of +S plants was able to reduce the effects of HR, leading to enhanced virus resistance. Expression of pathogenesis-related genes was also markedly up-regulated in +S plants after TMV-inoculation. On the subcellular level, comparison of TMV-inoculated +S and -S plants revealed that +S plants contained 55-132 % higher glutathione levels in mitochondria, chloroplasts, nuclei, peroxisomes and the cytosol than -S plants. Interestingly, mitochondria were the only organelles where TMV-inoculation resulted in a decrease of glutathione levels when compared to mock-inoculated plants. This was particularly obvious in -S plants, where the development of necrotic lesions was more pronounced. In summary, the overall higher antioxidative capacity and elevated activation of defense genes in +S plants indicate that sufficient sulfate supply enhances a preexisting plant defense reaction resulting in reduced symptom development and virus accumulation.


Assuntos
Glutationa/metabolismo , Nicotiana/efeitos dos fármacos , Doenças das Plantas/imunologia , Sulfatos/farmacologia , Enxofre/metabolismo , Vírus do Mosaico do Tabaco/fisiologia , Antioxidantes/metabolismo , Compartimento Celular , Morte Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cisteína/análise , Cisteína/metabolismo , Resistência à Doença , Regulação da Expressão Gênica de Plantas/genética , Glutationa/análise , Doenças das Plantas/virologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/virologia , Proteínas de Plantas/genética , RNA de Plantas/genética , RNA Viral/genética , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/farmacologia , Enxofre/análise , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...