Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 12(12): e028768, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37301747

RESUMO

Background Marinobufagenin, NKA (Na/K-ATPase) inhibitor, causes vasoconstriction and induces fibrosis via inhibition of Fli1 (Friend leukemia integration-1), a negative regulator of collagen synthesis. In vascular smooth muscle cells (VSMC), ANP (atrial natriuretic peptide), via a cGMP/PKG1 (protein kinase G1)-dependent mechanism, reduces NKA sensitivity to marinobufagenin. We hypothesized that VSMC from old rats, due to downregulation of ANP/cGMP/PKG-dependent signaling, would exhibit heightened sensitivity to the profibrotic effect of marinobufagenin. Methods and Results Cultured VSMC from the young (3-month-old) and old (24-month-old) male Sprague-Dawley rats and young VSMC with silenced PKG1 gene were treated with 1 nmol/L ANP, or with 1 nmol/L marinobufagenin, or with a combination of ANP and marinobufagenin. Collagen-1, Fli1, and PKG1 levels were assessed by Western blotting analyses. Vascular PKG1 and Fli1 levels in the old rats were reduced compared with their young counterparts. ANP prevented inhibition of vascular NKA by marinobufagenin in young VSMC but not in old VSMC. In VSMC from the young rats, marinobufagenin induced downregulation of Fli1 and an increase in collagen-1 level, whereas ANP blocked this effect. Silencing of the PKG1 gene in young VSMC resulted in a reduction in levels of PKG1 and Fli1; marinobufagenin additionally reduced Fli1 and increased collagen-1 level, and ANP failed to oppose these marinobufagenin effects, similar to VSMC from the old rats with the age-associated reduction in PKG1. Conclusions Age-associated reduction in vascular PKG1 and the resultant decline in cGMP signaling lead to the loss of the ability of ANP to oppose marinobufagenin-induced inhibition of NKA and fibrosis development. Silencing of the PKG1 gene mimicked these effects of aging.


Assuntos
Glicosídeos Cardíacos , Hipertensão , Músculo Liso Vascular , Animais , Masculino , Ratos , Envelhecimento/genética , Fator Natriurético Atrial , Células Cultivadas , Colágeno Tipo I , GMP Cíclico , Fibrose , Ratos Sprague-Dawley , Cloreto de Sódio na Dieta
2.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562955

RESUMO

The hypertensive response in Dahl salt-sensitive (DSS) rats on a high-salt (HS) diet is accompanied by central arterial stiffening (CAS), a risk factor for dementia, and heightened levels of a prohypertensive and profibrotic factor, the endogenous Na/K-ATPase inhibitor marinobufagenin (MBG). We studied the effect of the in vivo administration of MBG or HS diet on blood pressure (BP), CAS, and behavioral function in young DSS rats and normotensive Sprague-Dawley rats (SD), the genetic background for DSS rats. Eight-week-old male SD and DSS rats were given an HS diet (8% NaCl, n = 18/group) or a low-salt diet (LS; 0.1% NaCl, n = 14-18/group) for 8 weeks or MBG (50 µg/kg/day, n = 15-18/group) administered via osmotic minipumps for 4 weeks in the presence of the LS diet. The MBG-treated groups received the LS diet. The systolic BP (SBP); the aortic pulse wave velocity (aPWV), a marker of CAS; MBG levels; spatial memory, measured by a water maze task; and tissue collection for the histochemical analysis were assessed at the end of the experiment. DSS-LS rats had higher SBP, higher aPWV, and poorer spatial memory than SD-LS rats. The administration of stressors HS and MBG increased aPWV, SBP, and aortic wall collagen abundance in both strains vs. their LS controls. In SD rats, HS or MBG administration did not affect heart parameters, as assessed by ECHO vs. the SD-LS control. In DSS rats, impaired whole-heart structure and function were observed after HS diet administration in DSS-HS vs. DSS-LS rats. MBG treatment did not affect the ECHO parameters in DSS-MBG vs. DSS-LS rats. The HS diet led to an increase in endogenous plasma and urine MBG levels in both SD and DSS groups. Thus, the prohypertensive and profibrotic effect of HS diet might be partially attributed to an increase in MBG. The prohypertensive and profibrotic functions of MBG were pronounced in both DSS and SD rats, although quantitative PCR revealed that different profiles of profibrotic genes in DSS and SD rats was activated after MBG or HS administration. Spatial memory was not affected by HS diet or MBG treatment in either SD or DSS rats. Impaired cognitive function was associated with higher BP, CAS, and cardiovascular remodeling in young DSS-LS rats, as compared to young SD-LS rats. MBG and HS had similar effects on the cardiovascular system and its function in DSS and SD rats, although the rate of change in SD rats was lower than in DSS rats. The absence of a cumulative effect of increased aPWV and BP on spatial memory can be explained by the cerebrovascular and brain plasticity in young rats, which help the animals to tolerate CAS elevated by HS and MBG and to counterbalance the profibrotic effect of heightened MBG.


Assuntos
Glicosídeos Cardíacos , Disfunção Cognitiva , Hipertensão , Animais , Pressão Sanguínea , Bufanolídeos , Glicosídeos Cardíacos/farmacologia , Disfunção Cognitiva/etiologia , Masculino , Análise de Onda de Pulso , Ratos , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , Cloreto de Sódio/farmacologia , Cloreto de Sódio na Dieta/efeitos adversos , Remodelação Vascular
3.
Int J Mol Sci ; 19(10)2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326586

RESUMO

High salt (HS) intake stimulates the production of marinobufagenin (MBG), an endogenous steroidal Na/K-ATPase ligand, which activates profibrotic signaling. HS is accompanied by a blood pressure (BP) increase in salt-sensitive hypertension, but not in normotensive animals. Here, we investigated whether HS stimulates MBG production and activates transforming growth factor-beta (TGF-ß) profibrotic signaling in young normotensive rats, and whether these changes can be reversed by reducing salt to a normal salt (NS) level. Three-month old male Sprague⁻Dawley rats received NS for 4 and 8 weeks (0.5% NaCl; NS4 and NS8), or HS for 4 and 8 weeks (4% NaCl; HS4 and HS8), or HS for 4 weeks followed by NS for 4 weeks (HS4/NS4), n = 8/group. Systolic BP (SBP), pulse wave velocity (PWV), MBG excretion, aortic collagen 1α2, collagen 4α1 and TGF-ß, Smad2, Smad3, Fli-1 mRNA, and total collagen abundance were measured at baseline (BL), and on weeks 4 and 8. Statistical analysis was performed using one-way ANOVA. SBP was not affected by HS (125 ± 5 and 126 ± 6 vs. 128 ± 7 mmHg, HS4 and HS8 vs. BL, p > 0.05). HS increased MBG (164 ± 19 vs. 103 ± 19 pmol/24 h/kg, HS4 vs. BL, p < 0.05) and PWV (3.7 ± 0.2 vs. 2.7 ± 0.2 m/s, HS4 vs. NS4, p < 0.05). HS8 was associated with a further increase in MBG and PWV, with an increase in aortic Col1a2 80%), Col4a1 (50%), Tgfb1 (30%), Smad2 (30%) and Smad3 (45%) mRNAs, and aortic wall collagen (180%) vs. NS8 (all p < 0.05). NS following HS downregulated HS-induced factors: in HS4/NS4, the MBG level was 91 ± 12 pmol/24 h/kg (twofold lower than HS8, p < 0.01), PWV was 3.7 ± 0.3 vs. 4.7 ± 0.2 m/s (HS4/NS4 vs. HS8, p < 0.05), aortic wall Tgfb1, Col1a2, Col4a1, Smad2, Smad3 mRNAs, and collagen abundance were reversed by salt reduction to the BL levels (p < 0.05). HS was associated with an activation of TGF-ß signaling, aortic fibrosis and aortic stiffness accompanied by an MBG increase in the absence of SBP changes in young normotensive rats. The reduction of dietary salt following HS decreased MBG, PWV, aortic wall collagen and TGF-ß. Thus, HS-induced aortic stiffness in normotensive animals occurred in the context of elevated MBG, which may activate SMAD-dependent TGF-ß pro-fibrotic signaling. This data suggests that a decrease in salt consumption could help to restore aortic elasticity and diminish the risk of cardiovascular disease by reducing the production of the pro-fibrotic factor MBG.


Assuntos
Artérias/metabolismo , Artérias/fisiopatologia , Bufanolídeos/farmacologia , Dieta Hipossódica , Sódio na Dieta/efeitos adversos , Fator de Crescimento Transformador beta/metabolismo , Rigidez Vascular/efeitos dos fármacos , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/fisiologia , Aorta/fisiopatologia , Artérias/efeitos dos fármacos , Artérias/patologia , Biomarcadores , Pressão Sanguínea/efeitos dos fármacos , Colágeno/metabolismo , Fibrose , Ratos
4.
Am J Hypertens ; 29(5): 641-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26350300

RESUMO

BACKGROUND: Marinobufagenin (MBG) is an endogenous Na/K-ATPase inhibitor, a natriuretic and a vasoconstrictor. MBG is implicated in salt-sensitive hypertension, cardiac hypertrophy, and initiate the pro-fibrotic signaling. Previously it was demonstrated that immunoneutralization of an endogenous MBG by 3E9 anti-MBG-antibody (mAb) in vivo lowered blood pressure (BP) and reversed cardiac fibrosis in salt-sensitive, and in partially nephrectomized rats. In the present study, we investigated whether mAb alleviates vascular remodeling induced in normotensive rats on high salt intake. METHODS: Wistar rats (5 months old) received normal (CTRL; n = 8) or high salt intake (2% NaCl in drinking water) for 4 weeks ( n = 16). Rats from the group on a high salt intake were administered vehicle (SALT; n = 8) or mAb (50 µg/kg) (SALT-AB; n = 8) during the last week of high salt diet. BP, erythrocyte Na/K-ATPase activity, levels of MBG in plasma and 24-hour urine, and sensitivity of aortic explants to the vasorelaxant effect of sodium nitroprusside (SNP) were measured. Aortic collagen abundance was determined immunohistochemically. RESULTS: In SALT vs. CTRL, heightened levels of MBG were associated with inhibition of erythrocyte Na/K-ATPase in the absence of BP changes. High salt intake was accompanied by a 2.5-fold increase in aortic collagen abundance and by a reduction of sensitivity of aortic explants to the vasorelaxant effect of SNP following endothelin-1-induced constriction. In the SALT-AB group, all NaCl-mediated effects were reversed by immunoneutralization of MBG. CONCLUSIONS: High salt intake in young normotensive rats can induce vascular fibrosis via pressure-independent/MBG-dependent mechanisms, and this remodeling is reduced by immunoneutralization of MBG.


Assuntos
Anticorpos Monoclonais/farmacologia , Aorta/efeitos dos fármacos , Doenças da Aorta/prevenção & controle , Bufanolídeos/antagonistas & inibidores , Animais , Aorta/metabolismo , Aorta/patologia , Aorta/fisiopatologia , Doenças da Aorta/etiologia , Doenças da Aorta/metabolismo , Doenças da Aorta/fisiopatologia , Bufanolídeos/imunologia , Bufanolídeos/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Fibrose , Masculino , Ratos Wistar , Sódio na Dieta , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
5.
Circ Cardiovasc Genet ; 8(5): 736-45, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26374826

RESUMO

BACKGROUND: The bioactive steroid, marinobufagenin, is an endogenous Na/K-ATPase bufadienolide inhibitor that is synthesized by adrenocortical and placental cells. Marinobufagenin binding to Na/K-ATPase initiates profibrotic cell signaling, and heightened marinobufagenin levels are implicated in the pathogenesis of hypertension, preeclampsia, and chronic kidney disease. Steroids are derived from cholesterol through the traditional steroidogenesis pathway initiated by enzyme CYP11A1, and via the acidic bile acid pathway, which is controlled by enzyme CYP27A1. The mechanism of marinobufagenin biosynthesis in mammals, however, remains unknown. METHODS AND RESULTS: Here, we show that post-transcriptional silencing of the CYP27A1 gene in human trophoblast and rat adrenocortical cells reduced the expression of CYP27A1 mRNA by 70%, reduced total bile acids 2-fold, and marinobufagenin levels by 67% when compared with nontreated cells or cells transfected with nontargeting siRNA. In contrast, silencing of the CYP11A1 gene did not affect marinobufagenin production in either cell culture, but suppressed production of progesterone 2-fold in human trophoblast cells and of corticosterone by 90% in rat adrenocortical cells when compared with cells transfected with nontargeting siRNA. In vivo, in a high-salt administration experiment, male and female Dahl salt-sensitive rats became hypertensive after 4 weeks on a high-NaCl diet, their plasma marinobufagenin levels doubled, and adrenocortical CYP27A1 mRNA and protein increased 1.6-fold and 2.0-fold. CONCLUSIONS: Therefore, the endogenous steroidal Na/K-ATPase inhibitor, marinobufagenin, is synthesized in mammalian placenta and adrenal cortex from cholesterol through the novel acidic bile acid pathway. These findings will help to understand the role of marinobufagenin in highly prevalent human cardiovascular diseases.


Assuntos
Ácidos e Sais Biliares/metabolismo , Bufanolídeos/metabolismo , Doenças Cardiovasculares/metabolismo , Colestanotriol 26-Mono-Oxigenase/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Córtex Suprarrenal/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Colestanotriol 26-Mono-Oxigenase/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Feminino , Humanos , Masculino , Gravidez , Interferência de RNA , Ratos , Ratos Endogâmicos Dahl , Trofoblastos/metabolismo
6.
J Hypertens ; 33(8): 1602-10, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26136067

RESUMO

OBJECTIVE: Endogenous cardiotonic steroids, including marinobufagenin (MBG), stimulate vascular synthesis of collagen. Because mineralocorticoid antagonists competitively antagonize effect of cardiotonic steroids on the Na/K-ATPase, we hypothesized that spironolactone would reverse the profibrotic effects of MBG. METHODS: Experiment 1: Explants of thoracic aortae and aortic vascular smooth muscle cells from Wistar rats were cultured for 24 h in the presence of vehicle or MBG (100 nmol/l) with or without canrenone (10 µmol/l), an active metabolite of spironolactone. Experiment 2: In 16 patients (56 ±â€Š2 years) with resistant hypertension on a combined (lisinopril/amlodipine/hydrochlorothiazide) therapy, we determined arterial pressure, pulse wave velocity, plasma MBG, and erythrocyte Na/K-ATPase before and 6 months after addition of placebo (n = 8) or spironolactone (50 mg/day; n = 8) to the therapy. RESULTS: In rat aortic explants and in vascular smooth muscle cells, pretreatment with MBG resulted in a two-fold rise in collagen-1, and a marked reduction in the sensitivity of the aortic rings to the vasorelaxant effect of sodium nitroprusside following endothelin-1-induced constriction (EC50 = 480 ±â€Š67 vs. 23 ±â€Š3 nmol/l in vehicle-treated rings; P < 0.01). Canrenone blocked effects of MBG on collagen synthesis and restored sensitivity of vascular rings to sodium nitroprusside (EC50 = 17 ±â€Š1 nmol/l). Resistant hypertension patients exhibited elevated plasma MBG (0.42 ±â€Š0.07 vs. 0.24 ±â€Š0.03 nmol/l; P = 0.01) and reduced Na/K-ATPase activity (1.9 ±â€Š0.15 vs. 2.8 ±â€Š0.2 µmol Pi/ml per h, P < 0.01) vs. seven healthy individuals. Six-month administration of spironolactone, unlike placebo treatment, was associated with a decrease in pulse wave velocity and arterial pressure, and with restoration of Na/K-ATPase activity in the presence of unchanged MBG levels. CONCLUSION: MBG-induced vascular fibrosis is a likely target for spironolactone.


Assuntos
Aorta/patologia , Bufanolídeos/efeitos adversos , Bufanolídeos/antagonistas & inibidores , Canrenona/farmacologia , Hipertensão/tratamento farmacológico , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Espironolactona/uso terapêutico , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Pressão Arterial/efeitos dos fármacos , Bufanolídeos/sangue , Células Cultivadas , Colágeno Tipo I/metabolismo , Endotelina-1/farmacologia , Eritrócitos/enzimologia , Feminino , Fibrose/induzido quimicamente , Fibrose/prevenção & controle , Humanos , Hipertensão/sangue , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Nitroprussiato/farmacologia , Análise de Onda de Pulso , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/sangue , Vasodilatadores/farmacologia
7.
Mol Cell Proteomics ; 11(8): 303-16, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22493178

RESUMO

Induction of a pluripotent state in somatic cells through nuclear reprogramming has ushered in a new era of regenerative medicine. Heterogeneity and varied differentiation potentials among induced pluripotent stem cell (iPSC) lines are, however, complicating factors that limit their usefulness for disease modeling, drug discovery, and patient therapies. Thus, there is an urgent need to develop nonmutagenic rapid throughput methods capable of distinguishing among putative iPSC lines of variable quality. To address this issue, we have applied a highly specific chemoproteomic targeting strategy for de novo discovery of cell surface N-glycoproteins to increase the knowledge-base of surface exposed proteins and accessible epitopes of pluripotent stem cells. We report the identification of 500 cell surface proteins on four embryonic stem cell and iPSCs lines and demonstrate the biological significance of this resource on mouse fibroblasts containing an oct4-GFP expression cassette that is active in reprogrammed cells. These results together with immunophenotyping, cell sorting, and functional analyses demonstrate that these newly identified surface marker panels are useful for isolating iPSCs from heterogeneous reprogrammed cultures and for isolating functionally distinct stem cell subpopulations.


Assuntos
Separação Celular/métodos , Glicoproteínas/análise , Imunofenotipagem/métodos , Proteínas de Membrana/análise , Células-Tronco Pluripotentes/metabolismo , Proteômica/métodos , Animais , Células Cultivadas , Receptor gp130 de Citocina/análise , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/transplante , Fibroblastos/citologia , Fibroblastos/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Espectrometria de Massas , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Microscopia Confocal , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Teratoma/metabolismo , Teratoma/patologia
8.
Aging Cell ; 11(2): 350-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22247964

RESUMO

Longevity variability is a common feature of aging in mammals, but the mechanisms responsible for this remain largely unknown. Using microarray datasets coupled with prediction analysis of microarrays (PAM), we identified a set of 252 cardiac transcripts predictive of relative lifespan in Wistar and Fisher 344 rats. Prediction analysis of microarrays 'tests' of rat heart transcriptomes from a third longer lived Fisher × Norway Brown rat strain validated the predictive value of this gene subset. The expression patterns of these genes were highly conserved, and corresponding promoter regions were employed to identify common cis-elements and trans-activating factors implicated in their control. Specifically, four transcription factors (Max, Ets2, Erg, and Msx2) present in heart displayed longevity-dependent, strain-independent changes in abundance, but only ETS2 had an expression profile that directly correlated with the relative lifespan gene set. In heart, ETS2 was prevalent in cardiomyocytes (CMs) and showed a high degree of myocyte-to-myocyte variability predominantly in adult rat hearts prior to the exponential increase in the rate of mortality. Exclusively in this group, elevated ETS2 significantly overlapped with TUNEL staining in heart myocytes. In response to sympathetic stimuli, ETS2 is also up-regulated, and functionally, adenovirus-mediated over-expression of ETS2 promotes apoptosis-inducing factor-mediated, caspase-independent programmed necrosis exclusively in CMs that can be fully inhibited by the PARP-1 inhibitor DPQ. We conclude that variations in ETS2 abundance in hearts of adult rodents and the associated loss of CMs contribute at least partially, to the longevity variability observed during normal aging of rats through activation of programmed necrosis.


Assuntos
Envelhecimento , Proteína Proto-Oncogênica c-ets-2/genética , Animais , Senescência Celular , Perfilação da Expressão Gênica , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Necrose , Ratos
9.
Stem Cells Int ; 2011: 214203, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21912557

RESUMO

Pluripotent stem cells represent one promising source for cell replacement therapy in heart, but differentiating embryonic stem cell-derived cardiomyocytes (ESC-CMs) are highly heterogeneous and show a variety of maturation states. In this study, we employed an ESC clonal line that contains a cardiac-restricted ncx1 promoter-driven puromycin resistance cassette together with a mass culture system to isolate ESC-CMs that display traits characteristic of very immature CMs. The cells display properties of proliferation, CM-restricted markers, reduced mitochondrial mass, and hypoxia-resistance. Following transplantation into rodent hearts, bioluminescence imaging revealed that immature cells, but not more mature CMs, survived for at least one month following injection. These data and comparisons with more mature cells lead us to conclude that immature hypoxia resistant ESC-CMs can be isolated in mass in vitro and, following injection into heart, form grafts that may mediate long-term recovery of global and regional myocardial contractile function following infarction.

10.
Circ Res ; 100(12): 1723-31, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17525366

RESUMO

Spontaneous, localized, rhythmic ryanodine receptor (RyRs) Ca(2+) releases occur beneath the cell membrane during late diastolic depolarization in cardiac sinoatrial nodal cells (SANCs). These activate the Na(+)/Ca(2+) exchanger (NCX1) to generate inward current and membrane excitation that drives normal spontaneous beating. The morphological background for the proposed functional of RyR and NCX crosstalk, however, has not been demonstrated. Here we show that the average isolated SANC whole cell labeling density of RyRs and SERCA2 is similar to atrial and ventricle myocytes, and is similar among SANCs of all sizes. Labeling of NCX1 is also similar among SANCs of all sizes and exceeds that in atrial and ventricle myocytes. Submembrane colocalization of NCX1 and cardiac RyR (cRyR) in all SANCs exceeds that in the other cell types. Further, the Cx43 negative primary pacemaker area of the intact rabbit sinoatrial node (SAN) exhibits robust positive labeling for cRyR, NCX1, and SERCA2. Functional studies in isolated SANCs show that neither the average action potential (AP) characteristics, nor those of intracellular Ca(2+) releases, nor the spontaneous cycle length vary with cell size. Chelation of intracellular [Ca(2+)], or disabling RyRs or NCX1, markedly attenuates or abolishes spontaneous SANC beating in all SANCs. Thus, there is dense labeling of SERCA2, RyRs, and NCX1 in small-sized SANCs, thought to reside within the SAN center, the site of impulse initiation. Because normal automaticity of these cells requires intact Ca(2+) cycling, interactions of SERCA, RyR2 and NCX molecules are implicated in the initiation of the SAN impulse.


Assuntos
Tamanho Celular , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/fisiologia , Nó Sinoatrial/citologia , Nó Sinoatrial/fisiologia , Trocador de Sódio e Cálcio/fisiologia , Potenciais de Ação/fisiologia , Animais , Função Atrial/fisiologia , Cálcio/metabolismo , Átrios do Coração/citologia , Ventrículos do Coração/citologia , Microscopia Confocal , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Coelhos , Função Ventricular
11.
J Cell Mol Med ; 9(4): 804-17, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16364192

RESUMO

Embryonic stem (ES) cell lines, derived from the inner cell mass (ICM) of blastocyst-stage embryos, are pluripotent and have a virtually unlimited capacity for self-renewal and differentiation into all cell types of an embryoproper. Both human and mouse ES cell lines are the subject of intensive investigation for potential applications in developmental biology and medicine. ES cells from both sources differentiate in vitro into cells of ecto-, endoand meso-dermal lineages, and robust cardiomyogenic differentiation is readily observed in spontaneously differentiating ES cells when cultured under appropriate conditions. Molecular, cellular and physiologic analyses demonstrate that ES cell-derived cardiomyocytes are functionally viable and that these cell derivatives exhibit characteristics typical of heart cells in early stages of cardiac development. Because terminal heart failure is characterized by a significant loss of cardiomyocytes, the use of human ES cell-derived progeny represents one possible source for cell transplantation therapies. With these issues in mind, this review will focus on the differentiation of pluripotent embryonic stem cells into cardiomyocytes as a developmental model, and the possible use of ES cell-derived cardiomyocytes as source of donor cells.


Assuntos
Técnicas de Cultura de Células/métodos , Embrião de Mamíferos/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Animais , Blastocisto/citologia , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Células Cultivadas , Humanos , Camundongos , Microscopia de Contraste de Fase , Fenótipo , RNA Mensageiro/metabolismo
12.
Eur J Heart Fail ; 4(6): 687-97, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12453538

RESUMO

Cardiac function deteriorates with aging or disease. Short term, any changes in heart function may be beneficial, but long term the alterations are often detrimental. At a molecular level, functional adaptations involve quantitative and qualitative changes in gene expression. Analysis of all the RNA transcripts present in a cell's population (transcriptome) offers unprecedented opportunities to map these transitions. Microarrays (chips), capable of evaluating thousands of transcripts in one assay, are ideal for transcriptome analyses. Gene expression profiling provides information about the dynamics of total genome expression in response to environmental changes and may point to candidate genes responsible for the cascade of events that result in disease or are a consequence of aging. The aim of this review is to describe how comparisons of cellular transcriptomes by cDNA array based techniques provide information about the dynamics of total gene expression, and how the results can be applied to the study of cardiovascular disease and aging.


Assuntos
Doenças Cardiovasculares/genética , DNA Complementar/análise , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Doenças Cardiovasculares/fisiopatologia , Feminino , Genômica , Humanos , Masculino , Miocárdio/patologia , Prognóstico , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...