Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gastrointest Endosc ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636819

RESUMO

BACKGROUND & AIMS: Characterization of visible abnormalities in Barrett esophagus (BE) patients can be challenging, especially for unexperienced endoscopists. This results in suboptimal diagnostic accuracy and poor inter-observer agreement. Computer-aided diagnosis (CADx) systems may assist endoscopists. We aimed to develop, validate and benchmark a CADx system for BE neoplasia. METHODS: The CADx system received pretraining with ImageNet with consecutive domain-specific pretraining with GastroNet which includes 5 million endoscopic images. It was subsequently trained and internally validated using 1,758 narrow-band imaging (NBI) images of early BE neoplasia (352 patients) and 1,838 NBI images of non-dysplastic BE (173 patients) from 8 international centers. CADx was tested prospectively on corresponding image and video test sets with 30 cases (20 patients) of BE neoplasia and 60 cases (31 patients) of non-dysplastic BE. The test set was benchmarked by 44 general endoscopists in two phases (phase 1: no CADx assistance; phase 2: with CADx assistance). Ten international BE experts provided additional benchmark performance. RESULTS: Stand-alone sensitivity and specificity of the CADx system were 100% and 98% for images and 93% and 96% for videos, respectively. CADx outperformed general endoscopists without CADx assistance in terms of sensitivity (p=0.04). Sensitivity and specificity of general endoscopist increased from 84% to 96% and 90 to 98% with CAD assistance (p<0.001), respectively. CADx assistance increased endoscopists' confidence in characterization (p<0.001). CADx performance was similar to Barrett experts. CONCLUSION: CADx assistance significantly increased characterization performance of BE neoplasia by general endoscopists to the level of expert endoscopists. The use of this CADx system may thereby improve daily Barrett surveillance.

2.
Med Image Anal ; 94: 103157, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574544

RESUMO

Computer-aided detection and diagnosis systems (CADe/CADx) in endoscopy are commonly trained using high-quality imagery, which is not representative for the heterogeneous input typically encountered in clinical practice. In endoscopy, the image quality heavily relies on both the skills and experience of the endoscopist and the specifications of the system used for screening. Factors such as poor illumination, motion blur, and specific post-processing settings can significantly alter the quality and general appearance of these images. This so-called domain gap between the data used for developing the system and the data it encounters after deployment, and the impact it has on the performance of deep neural networks (DNNs) supportive endoscopic CAD systems remains largely unexplored. As many of such systems, for e.g. polyp detection, are already being rolled out in clinical practice, this poses severe patient risks in particularly community hospitals, where both the imaging equipment and experience are subject to considerable variation. Therefore, this study aims to evaluate the impact of this domain gap on the clinical performance of CADe/CADx for various endoscopic applications. For this, we leverage two publicly available data sets (KVASIR-SEG and GIANA) and two in-house data sets. We investigate the performance of commonly-used DNN architectures under synthetic, clinically calibrated image degradations and on a prospectively collected dataset including 342 endoscopic images of lower subjective quality. Additionally, we assess the influence of DNN architecture and complexity, data augmentation, and pretraining techniques for improved robustness. The results reveal a considerable decline in performance of 11.6% (±1.5) as compared to the reference, within the clinically calibrated boundaries of image degradations. Nevertheless, employing more advanced DNN architectures and self-supervised in-domain pre-training effectively mitigate this drop to 7.7% (±2.03). Additionally, these enhancements yield the highest performance on the manually collected test set including images with lower subjective quality. By comprehensively assessing the robustness of popular DNN architectures and training strategies across multiple datasets, this study provides valuable insights into their performance and limitations for endoscopic applications. The findings highlight the importance of including robustness evaluation when developing DNNs for endoscopy applications and propose strategies to mitigate performance loss.


Assuntos
Diagnóstico por Computador , Redes Neurais de Computação , Humanos , Diagnóstico por Computador/métodos , Endoscopia Gastrointestinal , Processamento de Imagem Assistida por Computador/métodos
3.
Gastrointest Endosc ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604297

RESUMO

BACKGROUND AND AIMS: In this pilot study we evaluated performance of a recently developed computer-aided detection (CADe) system for Barrett's neoplasia during live endoscopic procedures. METHODS: 15 patients with and 15 without a visible lesion were included in this study. A CAD assisted workflow was employed that included: a slow pullback video recording of the entire Barrett's segment with live CADe assistance, followed by CADe assisted level-based video recordings every 2cm of the Barrett's segment. Outcomes were per patient and per level diagnostic accuracy of the CAD assisted workflow, where the primary outcome was per patient in-vivo CADe sensitivity. RESULTS: In the per patient analyses, the CADe system detected all visible lesions (sensitivity 100%). Per patient CADe specificity was 53%. Per-level sensitivity and specificity of the CADe assisted workflow were 100% and 73%, respectively. CONCLUSION: In this pilot study, the CADe system detected all potentially neoplastic lesions in Barrett's esophagus comparable to an expert endoscopist. Continued refinement of the system may improve specificity. External validation in larger multicenter studies is planned.

4.
United European Gastroenterol J ; 11(4): 324-336, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37095718

RESUMO

INTRODUCTION: Endoscopic detection of early neoplasia in Barrett's esophagus is difficult. Computer Aided Detection (CADe) systems may assist in neoplasia detection. The aim of this study was to report the first steps in the development of a CADe system for Barrett's neoplasia and to evaluate its performance when compared with endoscopists. METHODS: This CADe system was developed by a consortium, consisting of the Amsterdam University Medical Center, Eindhoven University of Technology, and 15 international hospitals. After pretraining, the system was trained and validated using 1.713 neoplastic (564 patients) and 2.707 non-dysplastic Barrett's esophagus (NDBE; 665 patients) images. Neoplastic lesions were delineated by 14 experts. The performance of the CADe system was tested on three independent test sets. Test set 1 (50 neoplastic and 150 NDBE images) contained subtle neoplastic lesions representing challenging cases and was benchmarked by 52 general endoscopists. Test set 2 (50 neoplastic and 50 NDBE images) contained a heterogeneous case-mix of neoplastic lesions, representing distribution in clinical practice. Test set 3 (50 neoplastic and 150 NDBE images) contained prospectively collected imagery. The main outcome was correct classification of the images in terms of sensitivity. RESULTS: The sensitivity of the CADe system on test set 1 was 84%. For general endoscopists, sensitivity was 63%, corresponding to a neoplasia miss-rate of one-third of neoplastic lesions and a potential relative increase in neoplasia detection of 33% for CADe-assisted detection. The sensitivity of the CADe system on test sets 2 and 3 was 100% and 88%, respectively. The specificity of the CADe system varied for the three test sets between 64% and 66%. CONCLUSION: This study describes the first steps towards the establishment of an unprecedented data infrastructure for using machine learning to improve the endoscopic detection of Barrett's neoplasia. The CADe system detected neoplasia reliably and outperformed a large group of endoscopists in terms of sensitivity.


Assuntos
Esôfago de Barrett , Aprendizado Profundo , Neoplasias Esofágicas , Humanos , Esôfago de Barrett/diagnóstico , Esôfago de Barrett/patologia , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/patologia , Esofagoscopia/métodos , Estudos Retrospectivos , Sensibilidade e Especificidade
5.
Pathogens ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430411

RESUMO

Clear inter-individual differences exist in the response to C. trachomatis (CT) infections and reproductive tract complications in women. Host genetic variation like single nucleotide polymorphisms (SNPs) have been associated with differences in response to CT infection, and SNPs might be used as a genetic component in a tubal-pathology predicting algorithm. Our aim was to confirm the role of four genes by investigating proven associated SNPs in the susceptibility and severity of a CT infection. A total of 1201 women from five cohorts were genotyped and analyzed for TLR2 + 2477 G > A, NOD1 + 32656 T -> GG, CXCR5 + 10950 T > C, and IL10 - 1082 A > G. Results confirmed that NOD1 + 32656 T ->GG was associated with an increased risk of a symptomatic CT infection (OR: 1.9, 95%CI: 1.1-3.4, p = 0.02), but we did not observe an association with late complications. IL10 - 1082 A > G appeared to increase the risk of late complications (i.e., ectopic pregnancy/tubal factor infertility) following a CT infection (OR = 2.8, 95%CI: 1.1-7.1, p = 0.02). Other associations were not found. Confirmatory studies are important, and large cohorts are warranted to further investigate SNPs' role in the susceptibility and severity of a CT infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...