Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Math Biosci ; 363: 109052, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495013

RESUMO

Type I interferons (IFN) are the first line of immune response against infection. In this study, we explore the interaction between Type I IFN and foot-and-mouth disease virus (FMDV), focusing on the effect of this interaction on epithelial cell death. While several mathematical models have explored the interaction between interferon and viruses at a systemic level, with most of the work undertaken on influenza and hepatitis C, these cannot investigate why a virus such as FMDV causes extensive cell death in some epithelial tissues leading to the development of lesions, while other infected epithelial tissues exhibit negligible cell death. Our study shows how a model that includes epithelial tissue structure can explain the development of lesions in some tissues and their absence in others. Furthermore, we show how the site of viral entry in an epithelial tissue, the viral replication rate, IFN production, suppression of viral replication by IFN and IFN release by live cells, all have a major impact on results.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Interferon Tipo I , Bovinos , Animais , Vírus da Febre Aftosa/fisiologia , Interferon Tipo I/metabolismo , Interferon Tipo I/farmacologia , Febre Aftosa/metabolismo , Interferons/farmacologia , Células Epiteliais , Replicação Viral
2.
Vet Res ; 53(1): 63, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927724

RESUMO

Foot-and-mouth disease (FMD) is one of the most important livestock diseases restricting international trade. While African buffalo (Syncerus caffer) act as the main wildlife reservoir, viral and immune response dynamics during FMD virus acute infection have not been described before in this species. We used experimental needle inoculation and contact infections with three Southern African Territories serotypes to assess clinical, virological and immunological dynamics for thirty days post infection. Clinical FMD in the needle inoculated buffalo was mild and characterised by pyrexia. Despite the absence of generalised vesicles, all contact animals were readily infected with their respective serotypes within the first two to nine days after being mixed with needle challenged buffalo. Irrespective of the route of infection or serotype, there were positive associations between the viral loads in blood and the induction of host innate pro-inflammatory cytokines and acute phase proteins. Viral loads in blood and tonsil swabs were tightly correlated during the acute phase of the infection, however, viraemia significantly declined after a peak at four days post-infection (dpi), which correlated with the presence of detectable neutralising antibodies. In contrast, infectious virus was isolated in the tonsil swabs until the last sampling point (30 dpi) in most animals. The pattern of virus detection in serum and tonsil swabs was similar for all three serotypes in the direct challenged and contact challenged animals. We have demonstrated for the first time that African buffalo are indeed systemically affected by FMD virus and clinical FMD in buffalo is characterized by a transient pyrexia. Despite the lack of FMD lesions, infection of African buffalo was characterised by high viral loads in blood and oropharynx, rapid and strong host innate and adaptive immune responses and high transmissibility.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Anticorpos Antivirais , Búfalos , Comércio , Febre/veterinária , Vírus da Febre Aftosa/fisiologia , Imunidade , Internacionalidade
3.
Viruses ; 14(3)2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35337028

RESUMO

Foot-and-mouth disease (FMD) is endemic in large parts of sub-Saharan Africa, Asia and South America, where outbreaks in cloven-hooved livestock threaten food security and have severe economic impacts. Vaccination in endemic regions remains the most effective control strategy. Current FMD vaccines are produced from chemically inactivated foot-and-mouth disease virus (FMDV) grown in suspension cultures of baby hamster kidney 21 cells (BHK-21). Strain diversity means vaccines produced from one subtype may not fully protect against circulating disparate subtypes, necessitating the development of new vaccine strains that "antigenically match". However, some viruses have proven difficult to adapt to cell culture, slowing the manufacturing process, reducing vaccine yield and limiting the availability of effective vaccines, as well as potentiating the selection of undesired antigenic changes. To circumvent the need to cell culture adapt FMDV, we have used a systematic approach to develop recombinant suspension BHK-21 that stably express the key FMDV receptor integrin αvß6. We show that αvß6 expression is retained at consistently high levels as a mixed cell population and as a clonal cell line. Following exposure to field strains of FMDV, these recombinant BHK-21 facilitated higher virus yields compared to both parental and control BHK-21, whilst demonstrating comparable growth kinetics. The presented data supports the application of these recombinant αvß6-expressing BHK-21 in future FMD vaccine production.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Linhagem Celular , Vírus da Febre Aftosa/genética , Vacinação , Vacinas Virais/genética
4.
Viruses ; 13(12)2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34960702

RESUMO

Foot-and-mouth disease, caused by foot-and-mouth disease virus (FMDV), is an economically devastating disease affecting several important livestock species. FMDV is antigenically diverse and exists as seven serotypes comprised of many strains which are poorly cross-neutralised by antibodies induced by infection or vaccination. Co-infection and recombination are important drivers of antigenic diversity, especially in regions where several serotypes co-circulate at high prevalence, and therefore experimental systems to study these events in vitro would be beneficial. Here we have utilised recombinant FMDVs containing an HA or a FLAG epitope tag within the VP1 capsid protein to investigate the products of co-infection in vitro. Co-infection with viruses from the same and from different serotypes was demonstrated by immunofluorescence microscopy and flow cytometry using anti-tag antibodies. FLAG-tagged VP1 and HA-tagged VP1 could be co-immunoprecipitated from co-infected cells, suggesting that newly synthesised capsids may contain VP1 proteins from both co-infecting viruses. Furthermore, we provide the first demonstration of trans-encapsidation of an FMDV genome into capsids comprised of proteins encoded by a co-infecting heterologous virus. This system provides a useful tool for investigating co-infection dynamics in vitro, particularly between closely related strains, and has the advantage that it does not depend upon the availability of strain-specific FMDV antibodies.


Assuntos
Capsídeo/metabolismo , Vírus da Febre Aftosa/fisiologia , Febre Aftosa/virologia , RNA Viral/metabolismo , Empacotamento do Genoma Viral , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Coinfecção , Epitopos , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/imunologia , Genoma Viral , Hemaglutininas Virais/genética , Hemaglutininas Virais/imunologia , RNA Viral/genética , Sorogrupo
5.
Vaccine ; 39(35): 5015-5024, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34303562

RESUMO

Foot-and-mouth disease (FMD) is a global burden on the livestock industry. The causative agent, FMD virus (FMDV), is highly infectious and exists in seven distinct serotypes. Vaccination remains the most effective control strategy in endemic regions and current FMD vaccines are made from inactivated preparations of whole virus. The inherent instability of FMDV and the emergence of new strains presents challenges to efficacious vaccine development. Currently, vaccines available in East Africa are comprised of relatively historic strains with unreported stabilities. As an initial step to produce an improved multivalent FMD vaccine we have identified naturally stable East African FMDV strains for each of the A, O, SAT1 and SAT2 serotypes and investigated their potential for protecting ruminants against strains that have recently circulated in East Africa. Interestingly, high diversity in stability between and within serotypes was observed, and in comparison to non-African A serotype viruses reported to date, the East African strains tested in this study are less stable. Candidate vaccine strains were adapted to propagation in BHK-21 cells with minimal capsid changes and used to generate vaccinate sera that effectively neutralised a panel of FMDV strains selected to improve FMD vaccines used in East Africa. This work highlights the importance of combining tools to predict and assess FMDV vaccine stability, with cell culture adaptation and serological tests in the development of FMD vaccines.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Proteínas do Capsídeo/genética , Febre Aftosa/prevenção & controle , Sorogrupo
7.
Lancet Microbe ; 1(2): e66-e73, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32642742

RESUMO

BACKGROUND: Zoonotic tuberculosis is defined as human infection with Mycobacterium bovis. Although globally, India has the largest number of human tuberculosis cases and the largest cattle population, in which bovine tuberculosis is endemic, the burden of zoonotic tuberculosis is unknown. The aim of this study was to obtain estimates of the human prevalence of animal-associated members of the Mycobacterium tuberculosis complex (MTBC) at a large referral hospital in India. METHODS: We did a molecular epidemiological surveillance study of 940 positive mycobacteria growth indicator tube (MGIT) cultures, collected from patients visiting the outpatient department at Christian Medical College (Vellore, India) with suspected tuberculosis between Oct 1, 2018, and March 31, 2019. A PCR-based approach was applied to subspeciate cultures. Isolates identified as MTBC other than M tuberculosis or as inconclusive on PCR were subject to whole-genome sequencing (WGS), and phylogenetically compared with publicly available MTBC sequences from south Asia. Sequences from WGS were deposited in the National Center for Biotechnology Information Sequence Read Archive, accession number SRP226525 (BioProject database number PRJNA575883). FINDINGS: The 940 MGIT cultures were from 548 pulmonary and 392 extrapulmonary samples. A conclusive identification was obtained for all 940 isolates; wild-type M bovis was not identified. The isolates consisted of M tuberculosis (913 [97·1%] isolates), Mycobacterium orygis (seven [0·7%]), M bovis BCG (five [0·5%]), and non-tuberculous mycobacteria (15 [1·6%]). Subspecies were assigned for 25 isolates by WGS, which were analysed against 715 MTBC sequences from south Asia. Among the 715 genomes, no M bovis was identified. Four isolates of cattle origin were dispersed among human sequences within M tuberculosis lineage 1, and the seven M orygis isolates from human MGIT cultures were dispersed among sequences from cattle. INTERPRETATION: M bovis prevalence in humans is an inadequate proxy of zoonotic tuberculosis. The recovery of M orygis from humans highlights the need to use a broadened definition, including MTBC subspecies such as M orygis, to investigate zoonotic tuberculosis. The identification of M tuberculosis in cattle also reinforces the need for One Health investigations in countries with endemic bovine tuberculosis. FUNDING: Bill & Melinda Gates Foundation, Canadian Institutes for Health Research.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose Bovina , Tuberculose , Animais , Canadá , Bovinos , Humanos , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Tuberculose/epidemiologia , Tuberculose Bovina/epidemiologia
8.
PLoS Pathog ; 16(1): e1008235, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31905219

RESUMO

Although recombination is known to occur in foot-and-mouth disease virus (FMDV), it is considered only a minor determinant of virus sequence diversity. Analysis at phylogenetic scales shows inter-serotypic recombination events are rare, whereby recombination occurs almost exclusively in non-structural proteins. In this study we have estimated recombination rates within a natural host in an experimental setting. African buffaloes were inoculated with a SAT-1 FMDV strain containing two major viral sub-populations differing in their capsid sequence. This population structure enabled the detection of extensive within-host recombination in the genomic region coding for structural proteins and allowed recombination rates between the two sub-populations to be estimated. Quite surprisingly, the effective recombination rate in VP1 during the acute infection phase turns out to be about 0.1 per base per year, i.e. comparable to the mutation/substitution rate. Using a high-resolution map of effective within-host recombination in the capsid-coding region, we identified a linkage disequilibrium pattern in VP1 that is consistent with a mosaic structure with two main genetic blocks. Positive epistatic interactions between co-evolved variants appear to be present both within and between blocks. These interactions are due to intra-host selection both at the RNA and protein level. Overall our findings show that during FMDV co-infections by closely related strains, capsid-coding genes recombine within the host at a much higher rate than expected, despite the presence of strong constraints dictated by the capsid structure. Although these intra-host results are not immediately translatable to a phylogenetic setting, recombination and epistasis must play a major and so far underappreciated role in the molecular evolution of the virus at all scales.


Assuntos
Proteínas do Capsídeo/genética , Doenças dos Bovinos/virologia , Epistasia Genética , Vírus da Febre Aftosa/genética , Febre Aftosa/virologia , Animais , Búfalos , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Bovinos , Evolução Molecular , Vírus da Febre Aftosa/metabolismo , Genoma Viral , Filogenia , RNA Viral/genética , Recombinação Genética
9.
Sci Adv ; 5(7): eaax4899, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31328169

RESUMO

Bovine tuberculosis (bTB) is a major zoonotic disease of cattle that is endemic in much of the world, limiting livestock productivity and representing a global public health threat. Because the standard tuberculin skin test precludes implementation of Bacille Calmette-Guérin (BCG) vaccine-based control programs, we here developed and evaluated a novel peptide-based defined antigen skin test (DST) to diagnose bTB and to differentiate infected from vaccinated animals (DIVA). The results, in laboratory assays and in experimentally or naturally infected animals, demonstrate that the peptide-based DST provides DIVA capability and equal or superior performance over the extant standard tuberculin surveillance test. Together with the ease of chemical synthesis, quality control, and lower burden for regulatory approval compared with recombinant antigens, the results of our studies show that the DST considerably improves a century-old standard and enables the development and implementation of critically needed surveillance and vaccination programs to accelerate bTB control.


Assuntos
Antígenos de Bactérias/imunologia , Bovinos/microbiologia , Testes Cutâneos , Tuberculose Bovina/diagnóstico , Tuberculose Bovina/imunologia , Animais , Interferon gama/metabolismo , Peptídeos/imunologia , Teste Tuberculínico
10.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31092573

RESUMO

African buffaloes (Syncerus caffer) are the principal "carrier" hosts of foot-and-mouth disease virus (FMDV). Currently, the epithelia and lymphoid germinal centers of the oropharynx have been identified as sites for FMDV persistence. We carried out studies in FMDV SAT1 persistently infected buffaloes to characterize the diversity of viruses in oropharyngeal epithelia, germinal centers, probang samples (oropharyngeal scrapings), and tonsil swabs to determine if sufficient virus variation is generated during persistence for immune escape. Most sequencing reads of the VP1 coding region of the SAT1 virus inoculum clustered around 2 subpopulations differing by 22 single-nucleotide variants of intermediate frequency. Similarly, most sequences from oropharynx tissue clustered into two subpopulations, albeit with different proportions, depending on the day postinfection (dpi). There was a significant difference between the populations of viruses in the inoculum and in lymphoid tissue taken at 35 dpi. Thereafter, until 400 dpi, no significant variation was detected in the viral populations in samples from individual animals, germinal centers, and epithelial tissues. Deep sequencing of virus from probang or tonsil swab samples harvested prior to postmortem showed less within-sample variability of VP1 than that of tissue sample sequences analyzed at the same time. Importantly, there was no significant difference in the ability of sera collected between 14 and 400 dpi to neutralize the inoculum or viruses isolated at later time points in the study from the same animal. Therefore, based on this study, there is no evidence of escape from antibody neutralization contributing to FMDV persistent infection in African buffalo.IMPORTANCE Foot-and-mouth disease virus (FMDV) is a highly contagious virus of cloven-hoofed animals and is recognized as the most important constraint to international trade in animals and animal products. African buffaloes (Syncerus caffer) are efficient carriers of FMDV, and it has been proposed that new virus variants are produced in buffalo during the prolonged carriage after acute infection, which may spread to cause disease in livestock populations. Here, we show that despite an accumulation of low-frequency sequence variants over time, there is no evidence of significant antigenic variation leading to immune escape. Therefore, carrier buffalo are unlikely to be a major source of new virus variants.


Assuntos
Búfalos , Portador Sadio/veterinária , Evolução Molecular , Vírus da Febre Aftosa/crescimento & desenvolvimento , Febre Aftosa/imunologia , Febre Aftosa/virologia , Evasão da Resposta Imune , Animais , Proteínas do Capsídeo/genética , Portador Sadio/imunologia , Portador Sadio/virologia , Epitélio/virologia , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/imunologia , Instabilidade Genômica , Centro Germinativo/virologia , Mutação , Orofaringe/virologia , Análise de Sequência de DNA
11.
J Immunol ; 196(10): 4214-26, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27053760

RESUMO

The pestivirus noncytopathic bovine viral diarrhea virus (BVDV) can suppress IFN production in the majority of cell types in vitro. However, IFN is detectable in serum during acute infection in vivo for ∼5-7 d, which correlates with a period of leucopoenia and immunosuppression. In this study, we demonstrate that a highly enriched population of bovine plasmacytoid dendritic cells (DCs) produced IFN in response to BVDV in vitro. We further show that the majority of the IFN produced in response to infection both in vitro and in vivo is type III IFN and acid labile. Further, we show IL-28B (IFN-λ3) mRNA is induced in this cell population in vitro. Supernatant from plasmacytoid DCs harvested postinfection with BVDV or recombinant bovine IFN-α or human IL-28B significantly reduced CD4(+) T cell proliferation induced by tubercle bacillus Ag 85-stimulated monocyte-derived DCs. Furthermore, these IFNs induced IFN-stimulated gene expression predominantly in monocyte-derived DCs. IFN-treated immature DCs derived from murine bone marrow also had a reduced capacity to stimulate T cell proliferative responses to tubercle bacillus Ag 85. Immature DCs derived from either source had a reduced capacity for Ag uptake following IFN treatment that is dose dependent. Immunosuppression is a feature of a number of pestivirus infections; our studies suggest type III IFN production plays a key role in the pathogenesis of this family of viruses. Overall, in a natural host, we have demonstrated a link between the induction of type I and III IFN after acute viral infection and transient immunosuppression.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/imunologia , Células Dendríticas/imunologia , Vírus da Diarreia Viral Bovina/imunologia , Imunidade Celular , Interferon-alfa/imunologia , Interleucinas/imunologia , Aciltransferases/imunologia , Animais , Antígenos de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Bovinos , Linhagem Celular , Proliferação de Células , Humanos , Tolerância Imunológica , Interferon-alfa/sangue , Interferons , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/imunologia , Proteínas Recombinantes/imunologia , Sus scrofa
12.
J Virol ; 90(10): 5132-5140, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26962214

RESUMO

UNLABELLED: Foot-and-mouth disease (FMD) virus (FMDV) circulates as multiple serotypes and strains in many regions of endemicity. In particular, the three Southern African Territories (SAT) serotypes are maintained effectively in their wildlife reservoir, the African buffalo, and individuals may harbor multiple SAT serotypes for extended periods in the pharyngeal region. However, the exact site and mechanism for persistence remain unclear. FMD in buffaloes offers a unique opportunity to study FMDV persistence, as transmission from carrier ruminants has convincingly been demonstrated for only this species. Following coinfection of naive African buffaloes with isolates of three SAT serotypes from field buffaloes, palatine tonsil swabs were the sample of choice for recovering infectious FMDV up to 400 days postinfection (dpi). Postmortem examination identified infectious virus for up to 185 dpi and viral genomes for up to 400 dpi in lymphoid tissues of the head and neck, focused mainly in germinal centers. Interestingly, viral persistence in vivo was not homogenous, and the SAT-1 isolate persisted longer than the SAT-2 and SAT-3 isolates. Coinfection and passage of these SAT isolates in goat and buffalo cell lines demonstrated a direct correlation between persistence and cell-killing capacity. These data suggest that FMDV persistence occurs in the germinal centers of lymphoid tissue but that the duration of persistence is related to virus replication and cell-killing capacity. IMPORTANCE: Foot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in domestic livestock and wildlife species. African buffaloes (Syncerus caffer) are the primary carrier hosts of FMDV in African savannah ecosystems, where the disease is endemic. We have shown that the virus persists for up to 400 days in buffaloes and that there is competition between viruses during mixed infections. There was similar competition in cell culture: viruses that killed cells quickly persisted more efficiently in passaged cell cultures. These results may provide a mechanism for the dominance of particular viruses in an ecosystem.


Assuntos
Búfalos/virologia , Portador Sadio/veterinária , Vírus da Febre Aftosa/fisiologia , Vírus da Febre Aftosa/patogenicidade , Febre Aftosa/virologia , África/epidemiologia , Animais , Animais Selvagens/virologia , Anticorpos Antivirais/sangue , Portador Sadio/virologia , Coinfecção/epidemiologia , Coinfecção/veterinária , Coinfecção/virologia , Ensaio de Imunoadsorção Enzimática , Febre Aftosa/epidemiologia , Febre Aftosa/imunologia , Febre Aftosa/transmissão , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/imunologia , Genoma Viral , Tonsila Palatina/virologia , Sorogrupo , Virulência , Replicação Viral
13.
J Gen Virol ; 97(7): 1557-1565, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27002540

RESUMO

Foot-and-mouth disease (FMD) has a major economic impact throughout the world and is a considerable threat to food security. Current FMD virus (FMDV) vaccines are made from chemically inactivated virus and need to contain intact viral capsids to maximize efficacy. FMDV exists as seven serotypes, each made up by a number of constantly evolving subtypes. A lack of immunological cross-reactivity between serotypes and between some strains within a serotype greatly complicates efforts to control FMD by vaccination. Thus, vaccines for one serotype do not afford protection against the others, and multiple-serotype-specific vaccines are required for effective control. The FMDV serotypes exhibit variation in their thermostability, and the capsids of inactivated preparations of the O, C and SAT serotypes are particularly susceptible to dissociation at elevated temperature. Methods to quantify capsid stability are currently limited, lack sensitivity and cannot accurately reflect differences in thermostability. Thus, new, more sensitive approaches to quantify capsid stability would be of great value for the production of more stable vaccines and to assess the effect of production conditions on vaccine preparations. Here we have investigated the application of a novel methodology (termed PaSTRy) that utilizes an RNA-binding fluorescent dye and a quantitative (q)PCR machine to monitor viral genome release and hence dissociation of the FMDV capsid during a slow incremental increase in temperature. PaSTRy was used to characterize capsid stability of all FMDV serotypes. Furthermore, we have used this approach to identify stabilizing factors for the most labile FMDV serotypes.


Assuntos
Proteínas do Capsídeo/imunologia , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/imunologia , Animais , Capsídeo/imunologia , Linhagem Celular , Cricetinae , Febre Aftosa/imunologia , Febre Aftosa/virologia , Genoma Viral/genética , Cabras/virologia , Temperatura Alta , Reação em Cadeia da Polimerase , Sorogrupo , Vacinação
14.
PLoS One ; 10(10): e0138571, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26431527

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. FMD virus (FMDV) shows a strong tropism for epithelial cells, and FMD is characterised by cell lysis and the development of vesicular lesions in certain epithelial tissues (for example, the tongue). By contrast, other epithelial tissues do not develop lesions, despite being sites of viral replication (for example, the dorsal soft palate). The reasons for this difference are poorly understood, but hypotheses are difficult to test experimentally. In order to identify the factors which drive cell lysis, and consequently determine the development of lesions, we developed a partial differential equation model of FMDV infection in bovine epithelial tissues and used it to explore a range of hypotheses about epithelium structure which could be driving differences in lytic behaviour observed in different tissues. Our results demonstrate that, based on current parameter estimates, epithelial tissue thickness and cell layer structure are unlikely to be determinants of FMDV-induced cell lysis. However, differences in receptor distribution or viral replication amongst cell layers could influence the development of lesions, but only if viral replication rates are much lower than current estimates.


Assuntos
Epitélio/virologia , Vírus da Febre Aftosa/patogenicidade , Modelos Teóricos , Animais , Bovinos , Epitélio/patologia , Vírus da Febre Aftosa/fisiologia , Replicação Viral
15.
PLoS One ; 10(4): e0124966, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25905707

RESUMO

Nairobi sheep disease virus (NSDV; also called Ganjam virus in India) is a bunyavirus of the genus Nairovirus. It causes a haemorrhagic gastroenteritis in sheep and goats with mortality up to 90%. The virus is closely related to the human pathogen Crimean-Congo haemorrhagic fever virus (CCHFV). Little is currently known about the biology of NSDV. We have generated specific antibodies against the virus nucleocapsid protein (N) and polymerase (L) and used these to characterise NSDV in infected cells and to study its distribution during infection in a natural host. Due to its large size and the presence of a papain-like protease (the OTU-like domain) it has been suggested that the L protein of nairoviruses undergoes an autoproteolytic cleavage into polymerase and one or more accessory proteins. Specific antibodies which recognise either the N-terminus or the C-terminus of the NSDV L protein showed no evidence of L protein cleavage in NSDV-infected cells. Using the specific anti-N and anti-L antibodies, it was found that these viral proteins do not fully colocalise in infected cells; the N protein accumulated near the Golgi at early stages of infection while the L protein was distributed throughout the cytoplasm, further supporting the multifunctional nature of the L protein. These antibodies also allowed us to gain information about the organs and cell types targeted by the virus in vivo. We could detect NSDV in cryosections prepared from various tissues collected post-mortem from experimentally inoculated animals; the virus was found in the mucosal lining of the small and large intestine, in the lungs, and in mesenteric lymph nodes (MLN), where NSDV appeared to target monocytes and/or macrophages.


Assuntos
Anticorpos Antivirais/imunologia , Doença dos Ovinos de Nairobi/imunologia , Vírus da Doença do Carneiro de Nairobi/imunologia , Animais , Células Cultivadas , Ovinos , Distribuição Tecidual
16.
J Gen Virol ; 95(Pt 11): 2329-2345, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25000962

RESUMO

Laboratory animal models have provided valuable insight into foot-and-mouth disease virus (FMDV) pathogenesis in epidemiologically important target species. While not perfect, these models have delivered an accelerated time frame to characterize the immune responses in natural hosts and a platform to evaluate therapeutics and vaccine candidates at a reduced cost. Further expansion of these models in mice has allowed access to genetic mutations not available for target species, providing a powerful and versatile experimental system to interrogate the immune response to FMDV and to target more expensive studies in natural hosts. The purpose of this review is to describe commonly used FMDV infection models in laboratory animals and to cite examples of when these models have failed or successfully provided insight relevant for target species, with an emphasis on natural and vaccine-induced immunity.


Assuntos
Vírus da Febre Aftosa/imunologia , Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Vacinas Virais/uso terapêutico , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Bovinos , Febre Aftosa/virologia , Imunidade Celular , Imunidade Humoral , Imunidade Inata , Camundongos , Modelos Animais , Sus scrofa , Linfócitos T/imunologia
17.
J Virol ; 88(15): 8307-18, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24829347

RESUMO

UNLABELLED: Monoclonal-antibody (MAb)-resistant mutants were used to map antigenic sites on foot-and-mouth disease virus (FMDV), which resulted in the identification of neutralizing epitopes in the flexible ßG-ßH loop in VP1. For FMDV SAT2 viruses, studies have shown that at least two antigenic sites exist. By use of an infectious SAT2 cDNA clone, 10 structurally exposed and highly variable loops were identified as putative antigenic sites on the VP1, VP2, and VP3 capsid proteins of SAT2/Zimbabwe (ZIM)/7/83 (topotype II) and replaced with the corresponding regions of SAT2/Kruger National Park (KNP)/19/89 (topotype I). Virus neutralization assays using convalescent-phase antisera raised against the parental virus, SAT2/ZIM/7/83, indicated that the mutant virus containing the TQQS-to-ETPV mutation in the N-terminal part of the ßG-ßH loop of VP1 showed not only a significant increase in the neutralization titer but also an increase in the index of avidity to the convalescent-phase antisera. Furthermore, antigenic profiling of the epitope-replaced and parental viruses with nonneutralizing SAT2-specific MAbs led to the identification of two nonneutralizing antigenic regions. Both regions were mapped to incorporate residues 71 to 72 of VP2 as the major contact point. The binding footprint of one of the antigenic regions encompasses residues 71 to 72 and 133 to 134 of VP2 and residues 48 to 50 of VP1, and the second antigenic region encompasses residues 71 to 72 and 133 to 134 of VP2 and residues 84 to 86 and 109 to 11 of VP1. This is the first time that antigenic regions encompassing residues 71 to 72 of VP2 have been identified on the capsid of a SAT2 FMDV. IMPORTANCE: Monoclonal-antibody-resistant mutants have traditionally been used to map antigenic sites on foot-and-mouth disease virus (FMDV). However, for SAT2-type viruses, which are responsible for most of the FMD outbreaks in Africa and are the most varied of all seven serotypes, only two antigenic sites have been identified. We have followed a unique approach using an infectious SAT2 cDNA genome-length clone. Ten structurally surface-exposed, highly varied loops were identified as putative antigenic sites on the VP1, VP2, and VP3 capsid proteins of the SAT2/ZIM/7/83 virus. These regions were replaced with the corresponding regions of an antigenically disparate virus, SAT2/KNP/19/89. Antigenic profiling of the epitope-replaced and parental viruses with SAT2-specific MAbs led to the identification of two unique antibody-binding footprints on the SAT2 capsid. In this report, evidence for the structural engineering of antigenic sites of a SAT2 capsid to broaden cross-reactivity with antisera is provided.


Assuntos
Antígenos Virais/imunologia , Proteínas do Capsídeo/imunologia , Vírus da Febre Aftosa/imunologia , Epitopos Imunodominantes/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos , Antígenos Virais/genética , Proteínas do Capsídeo/genética , Bovinos , Linhagem Celular , Mapeamento de Epitopos , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/isolamento & purificação , Epitopos Imunodominantes/genética , Camundongos Endogâmicos BALB C , Testes de Neutralização , Zimbábue
18.
Vet Res ; 44: 46, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23822567

RESUMO

The control of foot-and-mouth disease virus (FMDV) outbreaks in non-endemic countries relies on the rapid detection and removal of infected animals. In this paper we use the observed relationship between the onset of clinical signs and direct contact transmission of FMDV to identify predictors for the onset of clinical signs and identify possible approaches to preclinical screening in the field. Threshold levels for various virological and immunological variables were determined using Receiver Operating Characteristic (ROC) curve analysis and then tested using generalized linear mixed models to determine their ability to predict the onset of clinical signs. In addition, concordance statistics between qualitative real time PCR test results and virus isolation results were evaluated. For the majority of animals (71%), the onset of clinical signs occurred 3-4 days post infection. The onset of clinical signs was associated with high levels of virus in the blood, oropharyngeal fluid and nasal fluid. Virus is first detectable in the oropharyngeal fluid, but detection of virus in the blood and nasal fluid may also be good candidates for preclinical indicators. Detection of virus in the air was also significantly associated with transmission. This study is the first to identify statistically significant indicators of infectiousness for FMDV at defined time periods during disease progression in a natural host species. Identifying factors associated with infectiousness will advance our understanding of transmission mechanisms and refine intra-herd and inter-herd disease transmission models.


Assuntos
Doenças dos Bovinos/transmissão , Vírus da Febre Aftosa/isolamento & purificação , Febre Aftosa/transmissão , Animais , Anticorpos Antivirais/sangue , Bovinos , Doenças dos Bovinos/virologia , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária
19.
J Gen Virol ; 94(Pt 7): 1517-1527, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23559477

RESUMO

Foot-and-mouth disease virus (FMDV) is one of the most extensively studied animal pathogens because it remains a major threat to livestock economies worldwide. However, the dynamics of FMDV infection are still poorly understood. The application of reverse genetics provides the opportunity to generate molecular tools to further dissect the FMDV life cycle. Here, we have used reverse genetics to determine the capsid packaging limitations for a selected insertion site in the FMDV genome. We show that exogenous RNA up to a defined length can be stably introduced into the FMDV genome, whereas larger insertions are excised by recombination events. This led us to construct a recombinant FMDV expressing the fluorescent marker protein, termed iLOV. Characterization of infectious iLOV-FMDV showed the virus has a plaque morphology and rate of growth similar to the parental virus. In addition, we show that cells infected with iLOV-FMDV are easily differentiated by flow cytometry using the inherent fluorescence of iLOV and that cells infected with iLOV-FMDV can be monitored in real-time with fluorescence microscopy. iLOV-FMDV therefore offers a unique tool to characterize FMDV infection in vitro, and its applications for in vivo studies are discussed.


Assuntos
Epitélio/virologia , Vírus da Febre Aftosa/patogenicidade , Proteínas de Fluorescência Verde/metabolismo , Recombinação Genética , Animais , Células Cultivadas , Efeito Citopatogênico Viral , Citometria de Fluxo , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/fisiologia , Cabras , Proteínas de Fluorescência Verde/genética
20.
Vet Res ; 44: 12, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23452550

RESUMO

RNA virus populations within samples are highly heterogeneous, containing a large number of minority sequence variants which can potentially be transmitted to other susceptible hosts. Consequently, consensus genome sequences provide an incomplete picture of the within- and between-host viral evolutionary dynamics during transmission. Foot-and-mouth disease virus (FMDV) is an RNA virus that can spread from primary sites of replication, via the systemic circulation, to found distinct sites of local infection at epithelial surfaces. Viral evolution in these different tissues occurs independently, each of them potentially providing a source of virus to seed subsequent transmission events. This study employed the Illumina Genome Analyzer platform to sequence 18 FMDV samples collected from a chain of sequentially infected cattle. These data generated snap-shots of the evolving viral population structures within different animals and tissues. Analyses of the mutation spectra revealed polymorphisms at frequencies >0.5% at between 21 and 146 sites across the genome for these samples, while 13 sites acquired mutations in excess of consensus frequency (50%). Analysis of polymorphism frequency revealed that a number of minority variants were transmitted during host-to-host infection events, while the size of the intra-host founder populations appeared to be smaller. These data indicate that viral population complexity is influenced by small intra-host bottlenecks and relatively large inter-host bottlenecks. The dynamics of minority variants are consistent with the actions of genetic drift rather than strong selection. These results provide novel insights into the evolution of FMDV that can be applied to reconstruct both intra- and inter-host transmission routes.


Assuntos
Doenças dos Bovinos/transmissão , Evolução Molecular , Vírus da Febre Aftosa/genética , Febre Aftosa/transmissão , Polimorfismo Genético , RNA Viral/genética , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/virologia , Febre Aftosa/epidemiologia , Febre Aftosa/virologia , Dados de Sequência Molecular , Mutação , Filogenia , Reação em Cadeia da Polimerase/veterinária , Alinhamento de Sequência/veterinária , Análise de Sequência de RNA/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...