Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Theor Appl Genet ; 137(8): 177, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972024

RESUMO

KEY MESSAGE: Underpinned natural variations and key genes associated with yield under different water regimes, and identified genomic signatures of genetic gain in the Indian wheat breeding program. A novel KASP marker for TKW under water stress was developed and validated. A comprehensive genome-wide association study was conducted on 300 spring wheat genotypes to elucidate the natural variations associated with grain yield and its eleven contributing traits under fully irrigated, restricted water, and simulated no water conditions. Utilizing the 35K Wheat Breeders' Array, we identified 1155 quantitative trait nucleotides (QTNs), with 207 QTNs exhibiting stability across diverse conditions. These QTNs were further delimited into 539 genomic regions using a genome-wide LD value of 3.0 Mbp, revealing pleiotropic control across traits and conditions. Sub-genome A was significantly associated with traits under irrigated conditions, while sub-genome B showed more QTNs under water stressed conditions. Favourable alleles with significantly associated QTNs were delineated, with a notable pyramiding effect for enhancing trait performance. Additionally, allele of only 921 QTNs significantly affected the population mean. Allele profiling highlighted C-306 as a most potential source of drought tolerance. Moreover, 762 genes overlapping significant QTNs were identified, narrowing down to 27 putative candidate genes overlapping 29 novel and functional SNPs expressing (≥ 0.5 tpm) relevance across various growth conditions. A new KASP assay was developed, targeting a gene TraesCS2A03G1123700 regulating thousand kernel weight under severe drought condition. Genomic selection models (GBLUP, BayesB, MxE, and R-Norm) demonstrated an average prediction accuracy of 0.06-0.58 across environments, indicating potential for trait selection. Retrospective analysis of the Indian wheat breeding program supported a genetic gain in GY at the rate of ca. 0.56% per breeding cycle, since 1960, supporting the identification of genomic signatures driving trait selection and genetic gain. These findings offer insight into improving the rate of genetic gain in wheat breeding programs globally.


Assuntos
Grão Comestível , Genótipo , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum , Água , Triticum/genética , Triticum/crescimento & desenvolvimento , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Estudos de Associação Genética , Secas , Mapeamento Cromossômico/métodos , Desequilíbrio de Ligação , Alelos , Estudo de Associação Genômica Ampla , Índia
3.
Bioinformatics ; 39(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37220903

RESUMO

MOTIVATION: Developing new crop varieties with superior performance is highly important to ensure robust and sustainable global food security. The speed of variety development is limited by long field cycles and advanced generation selections in plant breeding programs. While methods to predict yield from genotype or phenotype data have been proposed, improved performance and integrated models are needed. RESULTS: We propose a machine learning model that leverages both genotype and phenotype measurements by fusing genetic variants with multiple data sources collected by unmanned aerial systems. We use a deep multiple instance learning framework with an attention mechanism that sheds light on the importance given to each input during prediction, enhancing interpretability. Our model reaches 0.754 ± 0.024 Pearson correlation coefficient when predicting yield in similar environmental conditions; a 34.8% improvement over the genotype-only linear baseline (0.559 ± 0.050). We further predict yield on new lines in an unseen environment using only genotypes, obtaining a prediction accuracy of 0.386 ± 0.010, a 13.5% improvement over the linear baseline. Our multi-modal deep learning architecture efficiently accounts for plant health and environment, distilling the genetic contribution and providing excellent predictions. Yield prediction algorithms leveraging phenotypic observations during training therefore promise to improve breeding programs, ultimately speeding up delivery of improved varieties. AVAILABILITY AND IMPLEMENTATION: Available at https://github.com/BorgwardtLab/PheGeMIL (code) and https://doi.org/doi:10.5061/dryad.kprr4xh5p (data).


Assuntos
Aprendizado Profundo , Fenômica , Triticum/genética , Melhoramento Vegetal/métodos , Seleção Genética , Fenótipo , Genótipo , Genômica/métodos , Grão Comestível/genética
5.
Plant Genome ; 15(4): e20254, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36043341

RESUMO

The success of genomic selection (GS) in breeding schemes relies on its ability to provide accurate predictions of unobserved lines at early stages. Multigeneration data provides opportunities to increase the training data size and thus, the likelihood of extracting useful information from ancestors to improve prediction accuracy. The genomic best linear unbiased predictions (GBLUPs) are performed by borrowing information through kinship relationships between individuals. Multigeneration data usually becomes heterogeneous with complex family relationship patterns that are increasingly entangled with each generation. Under these conditions, historical data may not be optimal for model training as the accuracy could be compromised. The sparse selection index (SSI) is a method for training set (TRN) optimization, in which training individuals provide predictions to some but not all predicted subjects. We added an additional trimming process to the original SSI (trimmed SSI) to remove less important training individuals for prediction. Using a large multigeneration (8 yr) wheat (Triticum aestivum L.) grain yield dataset (n = 68,836), we found increases in accuracy as more years are included in the TRN, with improvements of ∼0.05 in the GBLUP accuracy when using 5 yr of historical data relative to when using only 1 yr. The SSI method showed a small gain over the GBLUP accuracy but with an important reduction on the TRN size. These reduced TRNs were formed with a similar number of subjects from each training generation. Our results suggest that the SSI provides a more stable ranking of genotypes than the GBLUP as the TRN becomes larger.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Melhoramento Vegetal/métodos , Fenótipo , Genômica/métodos , Genoma
6.
Front Plant Sci ; 13: 920682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873987

RESUMO

Spring bread wheat adaptation to diverse environments is supported by various traits such as phenology and plant architecture. A large-scale genome-wide association study (GWAS) was designed to investigate and dissect the genetic architecture of phenology affecting adaptation. It used 48 datasets from 4,680 spring wheat lines. For 8 years (2014-2021), these lines were evaluated for days to heading (DH) and maturity (DM) at three sites: Jabalpur, Ludhiana, and Samastipur (Pusa), which represent the three major Indian wheat-producing zones: the Central Zone (CZ), North-Western Plain Zone (NWPZ), and North-Eastern Plain Zone (NEPZ), respectively. Ludhiana had the highest mean DH of 103.8 days and DM of 148.6 days, whereas Jabalpur had the lowest mean DH of 77.7 days and DM of 121.6 days. We identified 119 markers significantly associated with DH and DM on chromosomes 5B (76), 2B (18), 7D (10), 4D (8), 5A (1), 6B (4), 7B (1), and 3D (1). Our results clearly indicated the importance of the photoperiod-associated gene (Ppd-B1) for adaptation to the NWPZ and the Vrn-B1 gene for adaptation to the NEPZ and CZ. A maximum variation of 21.1 and 14% was explained by markers 2B_56134146 and 5B_574145576 linked to the Ppd-B1 and Vrn-B1 genes, respectively, indicating their significant role in regulating DH and DM. The results provide important insights into the genomic regions associated with the two phenological traits that influence adaptation to the major wheat-producing zones in India.

7.
Front Plant Sci ; 13: 903819, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845653

RESUMO

Accelerating breeding efforts for developing biofortified bread wheat varieties necessitates understanding the genetic control of grain zinc concentration (GZnC) and grain iron concentration (GFeC). Hence, the major objective of this study was to perform genome-wide association mapping to identify consistently significant genotyping-by-sequencing markers associated with GZnC and GFeC using a large panel of 5,585 breeding lines from the International Maize and Wheat Improvement Center. These lines were grown between 2018 and 2021 in an optimally irrigated environment at Obregon, Mexico, while some of them were also grown in a water-limiting drought-stressed environment and a space-limiting small plot environment and evaluated for GZnC and GFeC. The lines showed a large and continuous variation for GZnC ranging from 27 to 74.5 ppm and GFeC ranging from 27 to 53.4 ppm. We performed 742,113 marker-traits association tests in 73 datasets and identified 141 markers consistently associated with GZnC and GFeC in three or more datasets, which were located on all wheat chromosomes except 3A and 7D. Among them, 29 markers were associated with both GZnC and GFeC, indicating a shared genetic basis for these micronutrients and the possibility of simultaneously improving both. In addition, several significant GZnC and GFeC associated markers were common across the irrigated, water-limiting drought-stressed, and space-limiting small plots environments, thereby indicating the feasibility of indirect selection for these micronutrients in either of these environments. Moreover, the many significant markers identified had minor effects on GZnC and GFeC, suggesting a quantitative genetic control of these traits. Our findings provide important insights into the complex genetic basis of GZnC and GFeC in bread wheat while implying limited prospects for marker-assisted selection and the need for using genomic selection.

8.
Nat Commun ; 13(1): 3044, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650212

RESUMO

The wheat wild relative Aegilops tauschii was previously used to transfer the Lr42 leaf rust resistance gene into bread wheat. Lr42 confers resistance at both seedling and adult stages, and it is broadly effective against all leaf rust races tested to date. Lr42 has been used extensively in the CIMMYT international wheat breeding program with resulting cultivars deployed in several countries. Here, using a bulked segregant RNA-Seq (BSR-Seq) mapping strategy, we identify three candidate genes for Lr42. Overexpression of a nucleotide-binding site leucine-rich repeat (NLR) gene AET1Gv20040300 induces strong resistance to leaf rust in wheat and a mutation of the gene disrupted the resistance. The Lr42 resistance allele is rare in Ae. tauschii and likely arose from ectopic recombination. Cloning of Lr42 provides diagnostic markers and over 1000 CIMMYT wheat lines carrying Lr42 have been developed documenting its widespread use and impact in crop improvement.


Assuntos
Aegilops , Basidiomycota , Aegilops/genética , Basidiomycota/genética , Mapeamento Cromossômico , Clonagem Molecular , Resistência à Doença/genética , Genes de Plantas/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Puccinia , Triticum/genética
9.
Genes (Basel) ; 13(4)2022 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-35456402

RESUMO

Wheat blast (WB) is a devastating fungal disease that has recently spread to Bangladesh and poses a threat to the wheat production in India, which is the second-largest wheat producing country in the world. In this study, 350 Indian wheat genotypes were evaluated for WB resistance in 12 field experiments in three different locations, namely Jashore in Bangladesh and Quirusillas and Okinawa in Bolivia. Single nucleotide polymorphisms (SNPs) across the genome were obtained using DArTseq® technology, and 7554 filtered SNP markers were selected for a genome-wide association study (GWAS). All the three GWAS approaches used identified the 2NS translocation as the only major source of resistance, explaining up to 32% of the phenotypic variation. Additional marker-trait associations were located on chromosomes 2B, 3B, 4D, 5A and 7A, and the combined effect of three SNPs (2B_180938790, 7A_752501634 and 5A_618682953) showed better resistance, indicating their additive effects on WB resistance. Among the 298 bread wheat genotypes, 89 (29.9%) carried the 2NS translocation, the majority of which (60 genotypes) were CIMMYT introductions, and 29 were from India. The 2NS carriers with a grand mean WB index of 6.6 showed higher blast resistance compared to the non-2NS genotypes with a mean index of 46.5. Of the 52 durum wheats, only one genotype, HI 8819, had the 2NS translocation and was the most resistant, with a grand mean WB index of 0.93. Our study suggests that the 2NS translocation is the only major resistance source in the Indian wheat panel analysed and emphasizes the urgent need to identify novel non-2NS resistance sources and genomic regions.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Mapeamento Cromossômico , Resistência à Doença/genética , Genótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia
10.
Theor Appl Genet ; 135(6): 1965-1983, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35416483

RESUMO

KEY MESSAGE: Genomic selection is a promising tool to select for spot blotch resistance and index-based selection can simultaneously select for spot blotch resistance, heading and plant height. A major biotic stress challenging bread wheat production in regions characterized by humid and warm weather is spot blotch caused by the fungus Bipolaris sorokiniana. Since genomic selection (GS) is a promising selection tool, we evaluated its potential for spot blotch in seven breeding panels comprising 6736 advanced lines from the International Maize and Wheat Improvement Center. Our results indicated moderately high mean genomic prediction accuracies of 0.53 and 0.40 within and across breeding panels, respectively which were on average 177.6% and 60.4% higher than the mean accuracies from fixed effects models using selected spot blotch loci. Genomic prediction was also evaluated in full-sibs and half-sibs panels and sibs were predicted with the highest mean accuracy (0.63) from a composite training population with random full-sibs and half-sibs. The mean accuracies when full-sibs were predicted from other full-sibs within families and when full-sibs panels were predicted from other half-sibs panels were 0.47 and 0.44, respectively. Comparison of GS with phenotypic selection (PS) of the top 10% of resistant lines suggested that GS could be an ideal tool to discard susceptible lines, as greater than 90% of the susceptible lines discarded by PS were also discarded by GS. We have also reported the evaluation of selection indices to simultaneously select non-late and non-tall genotypes with low spot blotch phenotypic values and genomic-estimated breeding values. Overall, this study demonstrates the potential of integrating GS and index-based selection for improving spot blotch resistance in bread wheat.


Assuntos
Ascomicetos , Triticum , Pão , Genômica , Humanos , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia
11.
Front Plant Sci ; 13: 830147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242157

RESUMO

Biofortification of cereal grains offers a lasting solution to combat micronutrient deficiency in developing countries where it poses developmental risks to children. Breeding efforts thus far have been directed toward increasing the grain concentrations of iron (Fe) and zinc (Zn) ions. Phytic acid (PA) chelates these metal ions, reducing their bioavailability in the digestive tract. We present a high-throughput assay for quantification of PA and its application in screening a breeding population. After extraction in 96-well megatiter plates, PA content was determined from the phosphate released after treatment with a commercially available phytase enzyme. In a set of 330 breeding lines of wheat grown in the field over 3 years as part of a HarvestPlus breeding program for high grain Fe and Zn, our assay unraveled variation for PA that ranged from 0.90 to 1.72% with a mean of 1.24%. PA content was not associated with grain yield. High yielding lines were further screened for low molar PA/Fe and PA/Zn ratios for increased metal ion bioavailability, demonstrating the utility of our assay. Genome-wide association study revealed 21 genetic associations, six of which were consistent across years. Five of these associations mapped to chromosomes 1A, 2A, 2D, 5A, and 7D. Additivity over four of these haplotypes accounted for an ∼10% reduction in PA. Our study demonstrates it is possible to scale up assays to directly select for low grain PA in forward breeding programs.

12.
Front Plant Sci ; 13: 835095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310648

RESUMO

Spot blotch caused by the fungus Bipolaris sorokiniana poses a serious threat to bread wheat production in warm and humid wheat-growing regions of the world. Hence, the major objective of this study was to identify consistent genotyping-by-sequencing (GBS) markers associated with spot blotch resistance using genome-wide association mapping on a large set of 6,736 advanced bread wheat breeding lines from the International Maize and Wheat Improvement Center. These lines were phenotyped as seven panels at Agua Fria, Mexico between the 2013-2014 and 2019-2020 crop cycles. We identified 214 significant spot blotch associated GBS markers in all the panels, among which only 96 were significant in more than one panel, indicating a strong environmental effect on the trait and highlights the need for multiple phenotypic evaluations to identify lines with stable spot blotch resistance. The 96 consistent GBS markers were on chromosomes 1A, 1B, 1D, 2A, 3B, 4A, 5B, 5D, 6B, 7A, 7B, and 7D, including markers possibly linked to the Lr46, Sb1, Sb2 and Sb3 genes. We also report the association of the 2NS translocation from Aegilops ventricosa with spot blotch resistance in some environments. Moreover, the spot blotch favorable alleles at the 2NS translocation and two markers on chromosome 3BS (3B_2280114 and 3B_5601689) were associated with increased grain yield evaluated at several environments in Mexico and India, implying that selection for favorable alleles at these loci could enable simultaneous improvement for high grain yield and spot blotch resistance. Furthermore, a significant relationship between the percentage of favorable alleles in the lines and their spot blotch response was observed, which taken together with the multiple minor effect loci identified to be associated with spot blotch in this study, indicate quantitative genetic control of resistance. Overall, the results presented here have extended our knowledge on the genetic basis of spot blotch resistance in bread wheat and further efforts to improve genetic resistance to the disease are needed for reducing current and future losses under climate change.

13.
Front Genet ; 13: 832153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222548

RESUMO

Since the inception of the theory and conceptual framework of genomic selection (GS), extensive research has been done on evaluating its efficiency for utilization in crop improvement. Though, the marker-assisted selection has proven its potential for improvement of qualitative traits controlled by one to few genes with large effects. Its role in improving quantitative traits controlled by several genes with small effects is limited. In this regard, GS that utilizes genomic-estimated breeding values of individuals obtained from genome-wide markers to choose candidates for the next breeding cycle is a powerful approach to improve quantitative traits. In the last two decades, GS has been widely adopted in animal breeding programs globally because of its potential to improve selection accuracy, minimize phenotyping, reduce cycle time, and increase genetic gains. In addition, given the promising initial evaluation outcomes of GS for the improvement of yield, biotic and abiotic stress tolerance, and quality in cereal crops like wheat, maize, and rice, prospects of integrating it in breeding crops are also being explored. Improved statistical models that leverage the genomic information to increase the prediction accuracies are critical for the effectiveness of GS-enabled breeding programs. Study on genetic architecture under drought and heat stress helps in developing production markers that can significantly accelerate the development of stress-resilient crop varieties through GS. This review focuses on the transition from traditional selection methods to GS, underlying statistical methods and tools used for this purpose, current status of GS studies in crop plants, and perspectives for its successful implementation in the development of climate-resilient crops.

14.
G3 (Bethesda) ; 12(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34849802

RESUMO

When multitrait data are available, the preferred models are those that are able to account for correlations between phenotypic traits because when the degree of correlation is moderate or large, this increases the genomic prediction accuracy. For this reason, in this article, we explore Bayesian multitrait kernel methods for genomic prediction and we illustrate the power of these models with three-real datasets. The kernels under study were the linear, Gaussian, polynomial, and sigmoid kernels; they were compared with the conventional Ridge regression and GBLUP multitrait models. The results show that, in general, the Gaussian kernel method outperformed conventional Bayesian Ridge and GBLUP multitrait linear models by 2.2-17.45% (datasets 1-3) in terms of prediction performance based on the mean square error of prediction. This improvement in terms of prediction performance of the Bayesian multitrait kernel method can be attributed to the fact that the proposed model is able to capture nonlinear patterns more efficiently than linear multitrait models. However, not all kernels perform well in the datasets used for evaluation, which is why more than one kernel should be evaluated to be able to choose the best kernel.


Assuntos
Genoma , Modelos Genéticos , Teorema de Bayes , Genótipo , Fenótipo
15.
Plants (Basel) ; 10(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34961165

RESUMO

Wheat blast (WB) disease, since its first identification in Bangladesh in 2016, is now an established serious threat to wheat production in South Asia. There is a need for sound knowledge about resistance sources and associated genomic regions to assist breeding programs. Hence, a panel of genotypes from India and Bangladesh was evaluated for wheat blast resistance and a genome-wide association study (GWAS) was performed. Disease evaluation was done during five crop seasons-at precision phenotyping platform (PPPs) for wheat blast disease at Jashore (2018-19), Quirusillas (2018-19 and 2019-20) and Okinawa (2019 and 2020). Single nucleotide polymorphisms (SNP) across the genome were obtained using DArTseq genotyping-by-sequencing platform, and in total 5713 filtered markers were used. GWAS revealed 40 significant markers associated with WB resistance, of which 33 (82.5%) were in the 2NS/2AS chromosome segment and one each on seven chromosomes (3B, 3D, 4A, 5A, 5D, 6A and 6B). The 2NS markers contributed significantly in most of the environments, explaining an average of 33.4% of the phenotypic variation. Overall, 22.4% of the germplasm carried 2NS/2AS segment. So far, 2NS translocation is the only effective WB resistance source being used in the breeding programs of South Asia. Nevertheless, the identification of non-2NS/2AS genomic regions for WB resistance provides a hope to broaden and diversify resistance for this disease in years to come.

16.
Front Plant Sci ; 12: 710707, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367228

RESUMO

Wheat blast (WB) caused by Magnaporthe oryzae pathotype Triticum (MoT) is an important fungal disease in tropical and subtropical wheat production regions. The disease was initially identified in Brazil in 1985, and it subsequently spread to some major wheat-producing areas of the country as well as several South American countries such as Bolivia, Paraguay, and Argentina. In recent years, WB has been introduced to Bangladesh and Zambia via international wheat trade, threatening wheat production in South Asia and Southern Africa with the possible further spreading in these two continents. Resistance source is mostly limited to 2NS carriers, which are being eroded by newly emerged MoT isolates, demonstrating an urgent need for identification and utilization of non-2NS resistance sources. Fungicides are also being heavily relied on to manage WB that resulted in increasing fungal resistance, which should be addressed by utilization of new fungicides or rotating different fungicides. Additionally, quarantine measures, cultural practices, non-fungicidal chemical treatment, disease forecasting, biocontrol etc., are also effective components of integrated WB management, which could be used in combination with varietal resistance and fungicides to obtain reasonable management of this disease.

17.
Front Plant Sci ; 12: 675859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394138

RESUMO

Wheat (Triticum aestivum L.) is the most widely grown cereal crop in the world and is staple food to half the world's population. The current world population is expected to reach 9.8 billion people by 2050, but food production is not expected to keep pace with demand in developing countries. Significant opportunities exist for traditional grain exporters to produce and export greater amounts of wheat to fill the gap. Karnal bunt, however, is a major threat, due to its use as a non-tariff trade barrier by several wheat-importing countries. The cultivation of resistant varieties remains the most cost-effective approach to manage the disease, but in countries that are free of the disease, genetic improvement is difficult due to quarantine restrictions. Here we report a study on pre-emptive breeding designed to identify linked molecular markers, evaluate the prospects of genomic selection as a tool, and prioritise wheat genotypes suitable for use as parents. In a genome-wide association (GWAS) study, we identified six DArTseq markers significantly linked to Karnal bunt resistance, which explained between 7.6 and 29.5% of the observed phenotypic variation. The accuracy of genomic prediction was estimated to vary between 0.53 and 0.56, depending on whether it is based solely on the identified Quantitative trait loci (QTL) markers or the use of genome-wide markers. As genotypes used as parents would be required to possess good yield and phenology, further research was conducted to assess the agronomic value of Karnal bunt resistant germplasm from the International Maize and Wheat Improvement Center (CIMMYT). We identified an ideal genotype, ZVS13_385, which possessed similar agronomic attributes to the highly successful Australian wheat variety, Mace. It is phenotypically resistant to Karnal bunt infection (<1% infection) and carried all the favourable alleles detected for resistance in this study. The identification of a genotype combining Karnal bunt resistance with adaptive agronomic traits overcomes the concerns of breeders regarding yield penalty in the absence of the disease.

18.
J Exp Bot ; 72(14): 5134-5157, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34139769

RESUMO

Despite being the world's most widely grown crop, research investments in wheat (Triticum aestivum and Triticum durum) fall behind those in other staple crops. Current yield gains will not meet 2050 needs, and climate stresses compound this challenge. However, there is good evidence that heat and drought resilience can be boosted through translating promising ideas into novel breeding technologies using powerful new tools in genetics and remote sensing, for example. Such technologies can also be applied to identify climate resilience traits from among the vast and largely untapped reserve of wheat genetic resources in collections worldwide. This review describes multi-pronged research opportunities at the focus of the Heat and Drought Wheat Improvement Consortium (coordinated by CIMMYT), which together create a pipeline to boost heat and drought resilience, specifically: improving crop design targets using big data approaches; developing phenomic tools for field-based screening and research; applying genomic technologies to elucidate the bases of climate resilience traits; and applying these outputs in developing next-generation breeding methods. The global impact of these outputs will be validated through the International Wheat Improvement Network, a global germplasm development and testing system that contributes key productivity traits to approximately half of the global wheat-growing area.


Assuntos
Melhoramento Vegetal , Triticum , Clima , Secas , Pesquisa Translacional Biomédica , Triticum/genética
19.
Front Plant Sci ; 12: 638520, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108977

RESUMO

In this study, we defined the target population of environments (TPE) for wheat breeding in India, the largest wheat producer in South Asia, and estimated the correlated response to the selection and prediction ability of five selection environments (SEs) in Mexico. We also estimated grain yield (GY) gains in each TPE. Our analysis used meteorological, soil, and GY data from the international Elite Spring Wheat Yield Trials (ESWYT) distributed by the International Maize and Wheat Improvement Center (CIMMYT) from 2001 to 2016. We identified three TPEs: TPE 1, the optimally irrigated Northwestern Plain Zone; TPE 2, the optimally irrigated, heat-stressed North Eastern Plains Zone; and TPE 3, the drought-stressed Central-Peninsular Zone. The correlated response to selection ranged from 0.4 to 0.9 within each TPE. The highest prediction accuracies for GY per TPE were derived using models that included genotype-by-environment interaction and/or meteorological information and their interaction with the lines. The highest prediction accuracies for TPEs 1, 2, and 3 were 0.37, 0.46, and 0.51, respectively, and the respective GY gains were 118, 46, and 123 kg/ha/year. These results can help fine-tune the breeding of elite wheat germplasm with stable yields to reduce farmers' risk from year-to-year environmental variation in India's wheat lands, which cover 30 million ha, account for 100 million tons of grain or more each year, and provide food and livelihoods for hundreds of millions of farmers and consumers in South Asia.

20.
Front Genet ; 12: 679162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054928

RESUMO

Wheat blast (WB) is a destructive disease in South America and its first outbreak in Bangladesh in 2016 posed a great risk to food security of South Asian countries. A genome wide association study (GWAS) was conducted on a diverse panel of 184 wheat genotypes from South Asia and CIMMYT. Phenotyping was conducted in eight field experiments in Bolivia and Bangladesh and a greenhouse experiment in the United States. Genotypic data included 11,401 SNP markers of the Illumina Infinium 15K BeadChip and four additional STS markers on the 2NS/2AS translocation region. Accessions with stable WB resistance across experiments were identified, which were all 2NS carriers. Nevertheless, a dozen moderately resistant 2AS lines were identified, exhibiting big variation among experiments. Significant marker-trait associations (MTA) were detected on chromosomes 1BS, 2AS, 6BS, and 7BL; but only MTAs on 2AS at the 2NS/2AS translocation region were consistently significant across experiments. The resistant accessions identified in this study could be used in production in South Asian countries as a preemptive strategy to prevent WB outbreak.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...