Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Food Nutr Res ; 105: 221-254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37516464

RESUMO

The processes for extracting and refining edible oils are well-established in industry at different scales. However, these processing lines encounter inefficiencies and oil losses when recovering crude or refined oil. Palm oil and olive oil extraction methods are used mainly as a combination of physical, thermal, and centrifugal methods to recover crude oil, which results in oil losses in the olive pomace or in palm oil effluents. Seed oils generally require a seed steam conditioning, and cooking stage, followed by physical oil recovery through an inefficient expeller. Most of the crude oil remaining in the expeller cake is then recovered by hexane. Crude seed oil is further refined in stages that also undergo oil losses. This chapter provides an overview of innovative technologies using microwave, ultrasound, megasonic and pulsed electric field energies, which can be used in the above-mentioned crude and refined oil processes to improve oil recovery. This chapter describes traditional palm oil, olive oil, and seed oil processes, as well as the specific process interventions that have been tested with these technologies. The impact of such technology interventions on oil quality is also summarized.


Assuntos
Petróleo , Azeite de Oliva , Óleo de Palmeira , Indústrias Extrativas e de Processamento
2.
Foods ; 12(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36766158

RESUMO

The high hydrostatic pressure (HHP) process has been studied for several applications in food technology and has been commercially implemented in several countries, mainly for non-thermal pasteurization and shelf-life extension of food products. HHP processing has been demonstrated to accelerate proteolytic hydrolysis at a specific combination of pressure and pressure-holding time for a given protein source and enzyme. The enzymatic hydrolysis of proteins is a well-known alternative to producing biologically active peptides, with antioxidant and antihypertensive capacity, from different food protein sources. However, some of these protein sources contain allergenic epitopes which are often not degraded by traditional hydrolysis. Moreover, the peptide profile and related biological activity of a hydrolysate depend on the protein source, the enzymes used, the parameters of the proteolysis process (pH, temperature, time of hydrolysis), and the use of other technologies such as HHP. The present review aims to provide an update on the use of HHP for improving enzymatic hydrolysis, with a particular focus on studies which evaluated hydrolysate antihypertensive and antioxidant capacity, as well as residual allergenicity. Overall, HHP has been shown to improve the biological properties of hydrolysates. While protein allergenicity can be reduced with traditional hydrolysis, HHP can further reduce the allergenicity. Compared with traditional hydrolysis methods, HHP-assisted protein hydrolysis offers a greater opportunity to add value to protein-rich products through conversion into high-end hydrolysate products with enhanced nutritional and functional properties.

3.
J Food Sci Technol ; 59(10): 3857-3866, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36193348

RESUMO

Alternative methods for wet extraction of coconut oil and protein assisted by ultrasound or microwave were developed and compared. Coconut milk was prepared by milling the pulp (5:1 water to coconut pulp ratio), further destabilised at pH 4 and centrifuged to obtain the cream and cream protein fractions (control process). Microwave-assisted treatment applied in milk (1 min, 3 pulses of 20 s; 2.5 GHz; 4.31 kW/kg by pulse) generated a significant increase in cream obtained, and in the coconut oil extraction yield (~ 20%) compared to its control. The ultrasound-assisted treatment (2.5 min; 24 kHz; 0.573 kW/kg, 6.85 W/cm2) also improved oil extraction (10-16%). Moreover, a higher protein yield was achieved in ultrasound treated samples when compared to their control (49.6-86.1%). Large particles of 11 m µ , probably aggregates of particles, and smaller particles of 3.6 m µ , were detected in coconut milk, which were reduced by ultrasound effect. Alternative treatments caused a greater liberation of total phenols in coconut cream. Coconut proteins in water (0.1%) showed high negative electrokinetic potential. The surface pressure of coconut proteins at the air/water interface was not modified by assisted treatments.

4.
J Food Sci Technol ; 58(1): 323-332, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33505076

RESUMO

Microwave (MW) pre-treatment of canola seeds or flaked seeds was found to be a superior alternative to the conventional thermal pre-treatment (steam). Flaked seeds were "cooked" (heat-treated) with steam or using microwave treatments in the temperature range of 62-130 °C prior to expeller pressing. Microwave cooking at 100 °C resulted in the highest increase in the pressed oil yield, which is an increase of 3.7% (w/w) on a pressed oil basis or 9.0% (oil in seed basis) compared with steam cooking. Whole canola seeds conditioning was conducted with microwaves or steam, in the temperature range of 40-75 °C, followed by microwave or steam cooking at 100 °C to evaluate the effect of MW treatment during conditioning on the expeller oil yield. The use of a continuous microwave process for combined conditioning of whole seeds at 55 °C and subsequent cooking of flaked seeds at 100 °C resulted in a 4.0% increase in expeller oil yield, compared with steam conditioning and cooking. The influence of dry basis (db %) moisture contents of 5%, 11.5%, and 16.5% on oil yield after steam or MW treatments of seeds and flaked seeds was also studied. The moisture content of 11.5% (db %) yielded the highest net oil yield for both MW and steam at best conditioning and cooking temperatures of 55 °C and 100 °C, respectively. No significant impact of MW cooking was seen on oil quality compared with conventional steam cooking.

5.
Trends Food Sci Technol ; 103: 367-375, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32836824

RESUMO

BACKGROUND: In humanitarian contexts, ensuring access to safe, nutritious, good quality and culturally appropriate food in the right quantity at the right time and place during an emergency or a protracted crisis is an enormous challenge, which is likely to increase given uncertainties such as climate change, global political and economic instability and emerging pandemics like COVID-19. Several international organizations and non-government organizations have well established systems to respond to food security emergencies. However, the role of food science and technology in humanitarian response is not well understood and is seldom considered in humanitarian circles. SCOPE AND APPROACH: The role of food science and technology in humanitarian response and the importance of addressing the requirements of the local consumers within the local food systems are discussed. KEY FINDINGS AND CONCLUSIONS: Humanitarian food aid policies focus on immediate and short-term assistance to save lives. The implementation of emergency programs and projects tends to induce dependency on aid, rather than strengthening local food systems and ensuring resilience. Transformative change must embrace innovation across the whole food system with an increased emphasis on food science and technology that addresses local food security, generates employment and contributes to the local economy. There needs to be a move beyond rehabilitating and increasing agricultural production to addressing the whole food system with a view to link humanitarian assistance and longer-term support to sustainable livelihoods and resilience.

6.
Ultrason Sonochem ; 53: 142-151, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30686601

RESUMO

High frequency ultrasound can enhance olive oil extractability industrially. However, the ultrasound attenuation phenomena and their implications on extractability, are not well understood. This work aims at evaluating the ultrasound attenuation effects on the oil extraction efficiency, while providing deeper insights into the physics behind the ultrasound extraction in a heterogeneous medium. Olives were collected and processed both in Italy and Uruguay during their respective harvest seasons. Sound pressure distribution was characterized in a high frequency ultrasound reactor, carrying 3 kg of water or paste, by using an indirect contact hydrophone device at 0.4 MHz or 2 MHz. A through-transmission ultrasonic technique was applied to determine attenuation profiles and coefficients in paste at the central frequency of each transducer, with various paste to water ratios and reactor sizes. Other ultrasound improvements on extractability were evaluated including reduction of malaxation time (10, 30 min), sonication time (2.5, 5 min) and power level (174, 280 W) without water addition and in a reactor with a 14.5 cm transducer to wall distance. However, no sound pressure levels in paste were detectable beyond 9 cm from the transducer at both frequencies. Among the various effects evaluated, an emission frequency of 0.4 MHz better improved extractability compared to 2 MHz. The attenuation profiles corroborated these findings with attenuation coefficients of 3.9 and 5.3 dB/cm measured near the respective frequencies. Improvements in oil extractability due to increasing sonication time and power level were significant (p < 0.05) also when sonicating beyond 14.5 cm and without water addition. Oil extractability improvements were observed even when sound pressure was undetectable beyond 9 cm from the transducer, suggesting that the standing wave oil trapping effect is not the governing mechanism for separation in high attenuation media for large scale systems.

7.
Ultrason Sonochem ; 40(Pt A): 720-726, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28946478

RESUMO

Ultrasound treatment is known to increase the oil extractability in olive and palm oil processes. This work examined the effect of ultrasound conditioning of avocado puree on oil extractability and quality, at low (18+40kHz) and high (2MHz) frequencies, at litre-scale. Other ultrasound parameters evaluated included high frequency effect (0.4, 0.6, and 2MHz; 5min; 90kJ/kg) and sonication time (2.5-10min at 2MHz), without malaxation. Finally, a megasonic post-malaxation intervention was assessed at selected malaxation times (15, 30, and 60min). Both low and high frequency ultrasound treatments of the non-malaxed avocado puree improved extractability by 15-24% additional oil recovery, with the highest extractability achieved after 2MHz treatments, depending on the fruit maturity and oil content. There was no preferential improvement on oil extractability observed across high frequencies, even though extractability increased with sonication time. Ultrasound treatment also showed a positive effect after puree malaxation. Oils obtained from sonicated purees showed peroxide and free fatty acid values below the industrial specification levels and an increase in total phenolic compounds after 2MHz treatment. High frequency ultrasound conditioning of avocado puree can enhance oil separation and potentially decrease the malaxation time in industrial processes without impacting on oil quality.

8.
Food Res Int ; 97: 318-339, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28578057

RESUMO

Over a course of centuries, various food processing technologies have been explored and implemented to provide safe, fresher-tasting and nutritive food products. Among these technologies, application of emerging food processes (e.g., cold plasma, pressurized fluids, pulsed electric fields, ohmic heating, radiofrequency electric fields, ultrasonics and megasonics, high hydrostatic pressure, high pressure homogenization, hyperbaric storage, and negative pressure cavitation extraction) have attracted much attention in the past decades. This is because, compared to their conventional counterparts, novel food processes allow a significant reduction in the overall processing times with savings in energy consumption, while ensuring food safety, and ample benefits for the industry. Noteworthily, industry and university teams have made extensive efforts for the development of novel technologies, with sound scientific knowledge of their effects on different food materials. The main objective of this review is to provide a historical account of the extensive efforts and inventions in the field of emerging food processing technologies since their inception to present day.


Assuntos
Manipulação de Alimentos , Desenho de Equipamento , Manipulação de Alimentos/história , Manipulação de Alimentos/instrumentação , Manipulação de Alimentos/métodos , História do Século XXI , Pressão , Temperatura , Ultrassom
9.
Ultrason Sonochem ; 38: 104-114, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28633809

RESUMO

High-frequency ultrasound standing waves (megasonics) have been demonstrated to enhance oil separation in the palm oil process at an industrial level. This work investigated the application of megasonics in the olive oil process on laboratory and pilot scale levels. Sound pressure level and cavitational yield distribution were characterised with hydrophones and luminol to determine associated physical and sonochemical effects inside the reactor. The effect of water addition (0%, 15%, and 30%), megasonic power levels (0%, 50%, and 100%), and malaxation time (10min, 30min, and 50min) was evaluated using response surface methodology (RSM) in a 700g batch extraction process. The RSM showed that the effect of the megasonic treatment (585kHz) in the presence of a reflector is more prominent at longer malaxation time (50min) and at higher water addition (30%) levels post-malaxation. Longer megasonic treatment of the malaxed paste (up to 15min; 220kJ/kg) increased oil extractability by up to 3.2%. When treating the malaxed paste with the same specific energy, higher oil extractability was obtained with longer treatments and low megasonic power levels in comparison to higher power levels and shorter times. Megasonic treatment of the paste before malaxation (585kHz, 10min, 146kJ/kg) and no water addition provided an increase in oil extractability of up to 3.8% with respect to the non-sonicated control. A double sonication intervention, before and after malaxation, using low (40kHz) and high (585kHz) frequency, respectively, provided up to 2.4% increase in oil extractability. A megasonic intervention post-malaxation (400 and 600kHz, 57-67min, 18-21kJ/kg) on a pilot scale using early-harvest olive fruits resulted in up to 1.7% extra oil extractability. Oil extracted under a high sonication frequency (free radical production regime) did not impact on olive oil quality parameters at reactor characterisation levels. Megasonic standing wave forces can enhance olive oil separation at various stages of the olive oil extraction process.

10.
Ultrason Sonochem ; 35(Pt B): 577-590, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27217305

RESUMO

In recent years the use of high frequency ultrasound standing waves (megasonics) for droplet or cell separation from biomass has emerged beyond the microfluidics scale into the litre to industrial scale applications. The principle for this separation technology relies on the differential positioning of individual droplets or particles across an ultrasonic standing wave field within the reactor and subsequent biomass material predisposition for separation via rapid droplet agglomeration or coalescence into larger entities. Large scale transducers have been characterised with sonochemiluminescence and hydrophones to enable better reactor designs. High frequency enhanced separation technology has been demonstrated at industrial scale for oil recovery in the palm oil industry and at litre scale to assist olive oil, coconut oil and milk fat separation. Other applications include algal cell dewatering and milk fat globule fractionation. Frequency selection depends on the material properties and structure in the biomass mixture. Higher frequencies (1 and 2MHz) have proven preferable for better separation of materials with smaller sized droplets such as milk fat globules. For palm oil and olive oil, separation has been demonstrated within the 400-600kHz region, which has high radical production, without detectable impact on product quality.


Assuntos
Biomassa , Fracionamento Químico/métodos , Ondas Ultrassônicas , Glicolipídeos/isolamento & purificação , Glicoproteínas/isolamento & purificação , Gotículas Lipídicas , Microalgas/citologia , Óleos de Plantas/química
11.
Mar Drugs ; 14(11)2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27879659

RESUMO

Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including ß-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability.


Assuntos
Biotecnologia/métodos , Carotenoides/química , Microalgas/química , Alga Marinha/química , Cromatografia com Fluido Supercrítico/métodos , Humanos , Micro-Ondas , Solventes/química
12.
J Dairy Sci ; 99(6): 4169-4177, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27060816

RESUMO

Fat from freshly pasteurized liquid whey was partially separated by gravity for 5, 10, and 30min, with and without simultaneous application of ultrasound. Ultrasound treatments were carried out at 400 and 1,000 kHz at different specific energy inputs (23-390 kJ/kg). The fat-enriched top layers (L1) and the fat-depleted bottom layers (L2) were separately removed and freeze-dried. Nonsonicated and sonicated L2 powders were stored for 14d at ambient temperature to assess their oxidative stability. Creaming was enhanced at both frequencies and fat separation increased with higher ultrasonic energy, extended sonication, or both. The oxidative volatile compound content decreased in defatted whey powders below published odor detection threshold values for all cases. Sonication had a minor influence on the partitioning of phospholipids with fat separation. The current study suggested that ultrasonication at high frequency enhanced fat separation from freshly pasteurized whey while improving whey powder oxidative stability.


Assuntos
Manipulação de Alimentos , Soro do Leite , Animais , Proteínas do Leite , Pós , Sonicação , Proteínas do Soro do Leite
13.
J Dairy Sci ; 99(5): 3358-3366, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26923043

RESUMO

Five commercial dairy plants were monitored over a 17-mo period to determine the seasonal occurrence of Clostridium spores in streams from the cheesemaking process. Every 2 mo, samples of raw milk (RM), separated cream (SC), pasteurized and standardized vat milk (PSVM), PSVM + lysozyme (PSVM+L), and manufactured cheese aged for 60 to 90 d were processed for analysis. Molecular diversity of the main species identified was determined using repetitive element palindromic PCR. The mean anaerobic spore counts (µ ± SE) were 3.16±0.054, 3.00±0.054, 2.89±0.059, and 2.03±0.054 log10 most probable number/L for RM, PSVM, PSVM+L, and SC, respectively. Although spore counts did not differ between dairy plants, seasonal variation was observed; spore counts of RM, PSVM, and PSVM+L were higher during winter (June to August) and summer (December to February) months, but no seasonal variation was seen in SC counts. The most frequently isolated species was Clostridium tyrobutyricum, ranging from 50 to 58.3% of isolates from milk and cream samples. Clostridium sporogenes was the second most common species identified (16.7-21.1%); Clostridium beijerinckii and Clostridium butyricum were also found, although at lower prevalence (7.9-13.2%). Analysis of the C. tyrobutyricum and C. sporogenes population structure through repetitive element palindromic PCR indicated a high diversity, with unique isolates found in each positive sample. The occurrence of Clostridia spores in incoming streams to cheesemaking was most prominent in the winter and summer seasons, with higher prevalence of C. tyrobutyricum in the months of June and August.


Assuntos
Queijo/microbiologia , Clostridium , Variação Genética , Estações do Ano , Esporos Bacterianos/genética , Esporos Bacterianos/isolamento & purificação , Animais , Clostridium/genética , Clostridium tyrobutyricum/genética , Contagem de Colônia Microbiana , Indústria de Laticínios , Microbiologia de Alimentos , Sequências Repetidas Invertidas , Leite/microbiologia , Reação em Cadeia da Polimerase
14.
Ultrason Sonochem ; 28: 118-129, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26384890

RESUMO

The ultrasonic fractionation of milk fat in whole milk to fractions with distinct particle size distributions was demonstrated using a stage-based ultrasound-enhanced gravity separation protocol. Firstly, a single stage ultrasound gravity separation was characterised after various sonication durations (5-20 min) with a mass balance, where defined volume partitions were removed across the height of the separation vessel to determine the fat content and size distribution of fat droplets. Subsequent trials using ultrasound-enhanced gravity separation were carried out in three consecutive stages. Each stage consisted of 5 min sonication, with single and dual transducer configurations at 1 MHz and 2 MHz, followed by aliquot collection for particle size characterisation of the formed layers located at the bottom and top of the vessel. After each sonication stage, gentle removal of the separated fat layer located at the top was performed. Results indicated that ultrasound promoted the formation of a gradient of vertically increasing fat concentration and particle size across the height of the separation vessel, which became more pronounced with extended sonication time. Ultrasound-enhanced fractionation provided fat enriched fractions located at the top of the vessel of up to 13 ± 1% (w/v) with larger globules present in the particle size distributions. In contrast, semi-skim milk fractions located at the bottom of the vessel as low as 1.2 ± 0.01% (w/v) could be produced, containing proportionally smaller sized fat globules. Particle size differentiation was enhanced at higher ultrasound energy input (up to 347 W/L). In particular, dual transducer after three-stage operation at maximum energy input provided highest mean particle size differentiation with up to 0.9 µm reduction in the semi-skim fractions. Higher frequency ultrasound at 2 MHz was more effective in manipulating smaller sized fat globules retained in the later stages of skimming than 1 MHz. While 2 MHz ultrasound removed 59 ± 2% of the fat contained in the initial sample, only 47 ± 2% was removed with 1 MHz after 3 ultrasound-assisted fractionation stages.


Assuntos
Fracionamento Químico/métodos , Ácidos Graxos/isolamento & purificação , Leite/química , Sonicação , Animais , Manipulação de Alimentos , Tamanho da Partícula
15.
Ultrason Sonochem ; 28: 346-356, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26384918

RESUMO

We here suggest a novel and straightforward approach for liter-scale ultrasound particle manipulation standing wave systems to guide system design in terms of frequency and acoustic power for operating in either cavitation or non-cavitation regimes for ultrasound standing wave systems, using the sonochemiluminescent chemical luminol. We show that this method offers a simple way of in situ determination of the cavitation threshold for selected separation vessel geometry. Since the pressure field is system specific the cavitation threshold is system specific (for the threshold parameter range). In this study we discuss cavitation effects and also measure one implication of cavitation for the application of milk fat separation, the degree of milk fat lipid oxidation by headspace volatile measurements. For the evaluated vessel, 2 MHz as opposed to 1 MHz operation enabled operation in non-cavitation or low cavitation conditions as measured by the luminol intensity threshold method. In all cases the lipid oxidation derived volatiles were below the human sensory detection level. Ultrasound treatment did not significantly influence the oxidative changes in milk for either 1 MHz (dose of 46 kJ/L and 464 kJ/L) or 2 MHz (dose of 37 kJ/L and 373 kJ/L) operation.

16.
Ultrason Sonochem ; 27: 22-29, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26186816

RESUMO

The performance of an ultrasound reactor chamber relies on the sound pressure level achieved throughout the system. The active volume of a high frequency ultrasound chamber can be determined by the sound pressure penetration and distribution provided by the transducers. This work evaluated the sound pressure levels and uniformity achieved in water by selected commercial scale high frequency plate transducers without and with reflector plates. Sound pressure produced by ultrasonic plate transducers vertically operating at frequencies of 400 kHz (120 W) and 2 MHz (128 W) was characterized with hydrophones in a 2 m long chamber and their effective operating distance across the chamber's vertical cross section was determined. The 2 MHz transducer produced the highest pressure amplitude near the transducer surface, with a sharp decline of approximately 40% of the sound pressure occurring in the range between 55 and 155 mm from the transducer. The placement of a reflector plate 500 mm from the surface of the transducer was shown to improve the sound pressure uniformity of 2 MHz ultrasound. Ultrasound at 400 kHz was found to penetrate the fluid up to 2 m without significant losses. Furthermore, 400 kHz ultrasound generated a more uniform sound pressure distribution regardless of the presence or absence of a reflector plate. The choice of the transducer distance to the opposite reactor wall therefore depends on the transducer plate frequency selected. Based on pressure measurements in water, large scale 400 kHz reactor designs can consider larger transducer distance to opposite wall and larger active cross-section, and therefore can reach higher volumes than when using 2 MHz transducer plates.

17.
Ultrason Sonochem ; 26: 56-63, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25637292

RESUMO

This work validated, in a higher frequency range, the theoretical predictions made by Boyle around 1930, which state that the optimal transmission of sound pressure through a metal plate occurs when the plate thickness equals a multiple of half the wavelength of the sound wave. Several reactor design parameters influencing the transmission of high frequency ultrasonic waves through a stainless steel plate were examined. The transmission properties of steel plates of various thicknesses (1-7 mm) were studied for frequencies ranging from 400 kHz to 2 MHz and at different distances between plates and transducers. It was shown that transmission of sound pressure through a steel plate showed high dependence of the thickness of the plate to the frequency of the sound wave (thickness ratio). Maximum sound pressure transmission of ∼ 60% of the incident pressure was observed when the ratio of the plate thickness to the applied frequency was a multiple of a half wavelength (2 MHz, 6mm stainless steel plate). In contrast, minimal sound pressure transmission (∼ 10-20%) was measured for thickness ratios that were not a multiple of a half wavelength. Furthermore, the attenuation of the sound pressure in the transmission region was also investigated. As expected, it was confirmed that higher frequencies have more pronounced sound pressure attenuation than lower frequencies. The spatial distribution of the sound pressure transmitted through the plate characterized by sonochemiluminescence measurements using luminol emission, supports the validity of the pressure measurements in this study.

18.
Ultrason Sonochem ; 21(6): 2122-30, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24815104

RESUMO

The formation of metallic particulates from erosion was investigated by running a series of transducers at various frequencies in water. Two low frequency transducer sonotrodes were run for 7.5h at 18kHz and 20kHz. Three high frequency plates operating at megasonic frequencies of 0.4MHz, 1MHz, and 2MHz were run over a 7days period. Electrical conductivity and pH of the solution were measured before and after each run. A portion of the non-sonicated and treated water was partially evaporated to achieve an 80-fold concentration of particles and then sieved through nano-filters of 0.1µm, 0.05µm, and 0.01µm. An aliquot of the evaporated liquid was also completely dried on strips of carbon tape to determine the presence of finer particles post sieving. An aliquot was analyzed for detection of 11 trace elements by Inductively Coupled Plasma Mass Spectroscopy (ICPMS). The filters and carbon tapes were analyzed by FE-SEM imaging to track the presence of metals by EDS (Energy Dispersive Spectroscopy) and measure the particle size and approximate composition of individual particles detected. Light microscopy visualization was used to calculate the area occupied by the particles present in each filter and high resolution photography was used for visualization of sonotrode surfaces. The roughness of all transducers before and after sonication was tested through profilometry. No evidence of formation of nano-particles was found at any tested frequency. High amounts of metallic micron-sized particles at 18kHz and 20kHz formed within a day, while after 7day runs only a few metallic micro particles were detected above 0.4MHz. Erosion was corroborated by an increase in roughness in the 20kHz tip after ultrasound. The elemental analysis showed that metal leach occurred but values remained below accepted drinking water limits, even after excessively long exposure to ultrasound. With the proviso that the particles measured here were only characterized in two dimensions and could be nanoparticulate in terms of the third dimension, this research suggests that there are no serious health implications resulting from the formation of nanoparticles under the evaluation conditions. Therefore, high frequency transducer plates can be safely operated in direct contact with foods. However, due to significant production of metallic micro-particulates, redesign of lower frequency sonotrodes and reaction chambers is advised to enable operation in various food processing direct-contact applications.


Assuntos
Manipulação de Alimentos/instrumentação , Inocuidade dos Alimentos , Metais/química , Sonicação/instrumentação , Transdutores , Metais/toxicidade , Água/química
19.
Ultrason Sonochem ; 21(6): 2131-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24751292

RESUMO

The effects of ultrasound application on skim milk (10% w/w total solids at natural pH 6.7 or alkali-adjusted to pH 8.0) prior to the renneting of milk at pH 6.7 were examined. Skim milk, made by reconstituting skim milk powder, was sonicated at 20kHz and 30°C (dissipated power density 286kJkg(-1)) in an ultrasonic reactor. The rennet gelation time, curd firming rate, curd firmness, and the connectivity of the rennet gel network were improved significantly in rennet gels made from milk ultrasonicated at pH 8.0 and re-adjusted back to pH 6.7 compared to those made from milk sonicated at pH 6.7. These renneting properties were also improved in milk sonicated at pH 6.7 compared to those of the non-sonicated control milk. The improvements in renneting behavior were related to ultrasound-induced changes to the proteins in the milk. This study showed that ultrasonication has potential to be used as an intervention to manipulate the renneting properties of milk for more efficient manufacturing of cheese.


Assuntos
Quimosina/metabolismo , Leite/metabolismo , Sonicação , Animais , Proteínas Sanguíneas/metabolismo , Cromatografia em Gel , Concentração de Íons de Hidrogênio , Leite/química , Tamanho da Partícula
20.
Ultrason Sonochem ; 21(6): 2165-75, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24704065

RESUMO

Ultrasonic processing can suit a number of potential applications in the dairy industry. However, the impact of ultrasound treatment on milk stability during storage has not been fully explored under wider ranges of frequencies, specific energies and temperature applications. The effect of ultrasonication on lipid oxidation was investigated in various types of milk. Four batches of raw milk (up to 2L) were sonicated at various frequencies (20, 400, 1000, 1600 and 2000kHz), using different temperatures (4, 20, 45 and 63°C), sonication times and ultrasound energy inputs up to 409kJ/kg. Pasteurized skim milk was also sonicated at low and high frequency for comparison. In selected experiments, non-sonicated and sonicated samples were stored at 4°C and were drawn periodically up to 14days for SPME-GCMS analysis. The cavitational yield, characterized in all systems in water, was highest between 400kHz and 1000kHz. Volatile compounds from milk lipid oxidation were detected and exceeded their odor threshold values at 400kHz and 1000kHz at specific energies greater than 271kJ/kg in raw milk. However, no oxidative volatile compounds were detected below 230kJ/kg in batch systems at the tested frequencies under refrigerated conditions. Skim milk showed a lower energy threshold for oxidative volatile formation. The same oxidative volatiles were detected after various passes of milk through a 0.3L flow cell enclosing a 20kHz horn and operating above 90kJ/kg. This study showed that lipid oxidation in milk can be controlled by decreasing the sonication time and the temperature in the system depending on the fat content in the sample among other factors.


Assuntos
Manipulação de Alimentos , Lipídeos/química , Leite/química , Sonicação , Compostos Orgânicos Voláteis/química , Animais , Oxirredução , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...