Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 33(46)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35914514

RESUMO

In this study, we demonstrate the effect of change of the sputtering power and the deposition pressure on the ignition and the combustion properties of Al/CuO reactive thin films. A reduced sputtering power of Al along with the deposition carried out at a higher-pressure result in a high-quality thin film showing a 200% improvement in the burn rate and a 50% drop in the ignition energy. This highlights the direct implication of the change of the process parameters on the responsivity and the reactivity of the reactive film while maintaining the Al and CuO thin-film integrity both crystallographically and chemically. Atomically resolved structural and chemical analyzes enabled us to qualitatively determine how the microstructural differences at the interface (thickness, stress level, delamination at high temperatures and intermixing) facilitate the Al and O migrations and impact the overall nano-thermite reactivity. We found that the deposition of CuO under low pressure produces well-defined and similar Al-CuO and CuO-Al interfaces with the least expected intermixing. Our investigations also showed that the magnitude of residual stress induced during the deposition plays a decisive role in influencing the overall nano-thermite reactivity. Higher is the magnitude of the tensile residual stress induced, stronger is the presence of gaseous oxygen at the interface. By contrast, high compressive interfacial stress aids in preserving the Al atoms for the main reaction while not getting expended in the interface thickening. Overall, this analysis helped in understanding the effect of change of deposition conditions on the reactivity of Al/CuO nanolaminates and several handles that may be pulled to optimize the process better by means of physical engineering of the interfaces.

2.
Nanotechnology ; 32(21)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33592601

RESUMO

It was experimentally found that silica and gold particles can modify the combustion properties of nanothermites but the exact role of the thermal properties of these additives on the propagating combustion front relative to other potential contributions remains unknown. Gold and silica particles of different sizes and volume loadings were added into aluminum/copper oxide thermites. Their effects on the flame front dynamics were investigated experimentally using microscopic dynamic imaging techniques and theoretically via a reaction model coupling mass and heat diffusion processes. A detailed theoretical analysis of the local temperature and thermal gradients at the vicinity of these two additives shows that highly conductive inclusions do not accelerate the combustion front while poor conductive inclusions result in the distortion of the flame front (corrugation), and therefore produce high thermal gradients (up to 1010K.m-1) at the inclusion/host material interface. This results in an overall slowing down of the combustion front. These theoretical findings contradict the experimental observations in which a net increase of the flame front velocity was found when Au and SiO2particles are added into the thermite. This leads to the conclusion that the faster burn rate observed experimentally cannot be fully associated with thermal effects only, but rather on chemical (catalytic) and/or mechanical mechanisms: formation of highly-stressed zones around the inclusion promoting the reactant mixing. One additional experiment in which physical SiO2particles were replaced by voids (filled with Ar during experiment) to cancel the potential mechanical effects while preserving the thermal inhomogeneity in the thermite structure confirms the hypothesis that instead of pure thermal conduction, it is the mechanical mechanisms that dominate the propagation velocity in our specific Al/CuO multilayered films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...