Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
2.
DNA Repair (Amst) ; 138: 103667, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554505

RESUMO

Formaldehyde is a highly reactive organic compound. Humans can be exposed to exogenous sources of formaldehyde, but formaldehyde is also produced endogenously as a byproduct of cellular metabolism. Because formaldehyde can react with DNA, it is considered a major endogenous source of DNA damage. However, the nature of the lesions underlying formaldehyde toxicity in cells remains vastly unknown. Here, we review the current knowledge of the different types of nucleic acid lesions that are induced by formaldehyde and describe the repair pathways known to counteract formaldehyde toxicity. Taking this knowledge together, we discuss and speculate on the predominant lesions generated by formaldehyde, which underly its natural toxicity.


Assuntos
Dano ao DNA , Reparo do DNA , DNA , Formaldeído , Formaldeído/toxicidade , Humanos , DNA/metabolismo , Animais
3.
Intensive Care Med Exp ; 12(1): 30, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502268

RESUMO

BACKGROUND: Mechanical power (MP) is the energy delivered by the ventilator to the respiratory system and combines factors related to the development of ventilator-induced lung injury (VILI). Flow-controlled ventilation (FCV) is a new ventilation mode using a constant low flow during both inspiration and expiration, which is hypothesized to lower the MP and to improve ventilation homogeneity. Data demonstrating these effects are scarce, since previous studies comparing FCV with conventional controlled ventilation modes in ICU patients suffer from important methodological concerns. OBJECTIVES: This study aims to assess the difference in MP between FCV and pressure-controlled ventilation (PCV). Secondary aims were to explore the effect of FCV in terms of minute volume, ventilation distribution and homogeneity, and gas exchange. METHODS: This is a physiological study in post-cardiothoracic surgery patients requiring mechanical ventilation in the ICU. During PCV at baseline and 90 min of FCV, intratracheal pressure, airway flow and electrical impedance tomography (EIT) were measured continuously, and hemodynamics and venous and arterial blood gases were obtained repeatedly. Pressure-volume loops were constructed for the calculation of the MP. RESULTS: In 10 patients, optimized FCV versus PCV resulted in a lower MP (7.7 vs. 11.0 J/min; p = 0.004). Although FCV did not increase overall ventilation homogeneity, it did lead to an improved ventilation of the dependent lung regions. A stable gas exchange at lower minute volumes was obtained. CONCLUSIONS: FCV resulted in a lower MP and improved ventilation of the dependent lung regions in post-cardiothoracic surgery patients on the ICU. Trial registration Clinicaltrials.gov identifier: NCT05644418. Registered 1 December 2022, retrospectively registered.

4.
Nat Commun ; 15(1): 2459, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503733

RESUMO

The hexameric AAA+ ATPase p97/VCP functions as an essential mediator of ubiquitin-dependent cellular processes, extracting ubiquitylated proteins from macromolecular complexes or membranes by catalyzing their unfolding. p97 is directed to ubiquitylated client proteins via multiple cofactors, most of which interact with the p97 N-domain. Here, we discover that FAM104A, a protein of unknown function also named VCF1 (VCP/p97 nuclear Cofactor Family member 1), acts as a p97 cofactor in human cells. Detailed structure-function studies reveal that VCF1 directly binds p97 via a conserved α-helical motif that recognizes the p97 N-domain with unusually high affinity, exceeding that of other cofactors. We show that VCF1 engages in joint p97 complex formation with the heterodimeric primary p97 cofactor UFD1-NPL4 and promotes p97-UFD1-NPL4-dependent proteasomal degradation of ubiquitylated substrates in cells. Mechanistically, VCF1 indirectly stimulates UFD1-NPL4 interactions with ubiquitin conjugates via its binding to p97 but has no intrinsic affinity for ubiquitin. Collectively, our findings establish VCF1 as an unconventional p97 cofactor that promotes p97-dependent protein turnover by facilitating p97-UFD1-NPL4 recruitment to ubiquitylated targets.


Assuntos
Proteínas de Ciclo Celular , Ubiquitina , Humanos , Ligação Proteica , Ubiquitina/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
5.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352618

RESUMO

Colibactin is a secondary metabolite produced by bacteria present in the human gut and is implicated in the progression of colorectal cancer and inflammatory bowel disease. This genotoxin alkylates deoxyadenosines on opposite strands of host cell DNA to produce DNA interstrand cross-links (ICLs) that block DNA replication. While cells have evolved multiple mechanisms to resolve ("unhook") ICLs encountered by the replication machinery, little is known about which of these pathways promote resistance to colibactin-induced ICLs. Here, we use Xenopus egg extracts to investigate replication-coupled repair of plasmids engineered to contain site-specific colibactin-ICLs. We show that replication fork stalling at a colibactin-ICL leads to replisome disassembly and activation of the Fanconi anemia ICL repair pathway, which unhooks the colibactin-ICL through nucleolytic incisions. These incisions generate a DNA double-strand break intermediate in one sister chromatid, which can be repaired by homologous recombination, and a monoadduct ("ICL remnant") in the other. Our data indicate that translesion synthesis past the colibactin-ICL remnant depends on Polη and a Polκ-REV1-Polζ polymerase complex. Although translesion synthesis past colibactin-induced DNA damage is frequently error-free, it can introduce T>N point mutations that partially recapitulate the mutation signature associated with colibactin exposure in vivo. Taken together, our work provides a biochemical framework for understanding how cells tolerate a naturally-occurring and clinically-relevant ICL.

6.
J Med Chem ; 67(2): 1447-1459, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38198520

RESUMO

Uveal melanoma (UM) is the most common primary intraocular malignancy in the adult eye. Despite the aggressive local management of primary UM, the development of metastases is common with no effective treatment options for metastatic disease. Genetic analysis of UM samples reveals the presence of mutually exclusive activating mutations in the Gq alpha subunits GNAQ and GNA11. One of the key downstream targets of the constitutively active Gq alpha subunits is the protein kinase C (PKC) signaling pathway. Herein, we describe the discovery of darovasertib (NVP-LXS196), a potent pan-PKC inhibitor with high whole kinome selectivity. The lead series was optimized for kinase and off target selectivity to afford a compound that is rapidly absorbed and well tolerated in preclinical species. LXS196 is being investigated in the clinic as a monotherapy and in combination with other agents for the treatment of uveal melanoma (UM), including primary UM and metastatic uveal melanoma (MUM).


Assuntos
Melanoma , Neoplasias Uveais , Adulto , Humanos , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Melanoma/tratamento farmacológico , Melanoma/patologia , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação
7.
PLoS Comput Biol ; 19(12): e1011703, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38048323

RESUMO

Generations of scientists have pursued the goal of defining beauty. While early scientists initially focused on objective criteria of beauty ('feature-based aesthetics'), philosophers and artists alike have since proposed that beauty arises from the interaction between the object and the individual who perceives it. The aesthetic theory of fluency formalizes this idea of interaction by proposing that beauty is determined by the efficiency of information processing in the perceiver's brain ('processing-based aesthetics'), and that efficient processing induces a positive aesthetic experience. The theory is supported by numerous psychological results, however, to date there is no quantitative predictive model to test it on a large scale. In this work, we propose to leverage the capacity of deep convolutional neural networks (DCNN) to model the processing of information in the brain by studying the link between beauty and neuronal sparsity, a measure of information processing efficiency. Whether analyzing pictures of faces, figurative or abstract art paintings, neuronal sparsity explains up to 28% of variance in beauty scores, and up to 47% when combined with a feature-based metric. However, we also found that sparsity is either positively or negatively correlated with beauty across the multiple layers of the DCNN. Our quantitative model stresses the importance of considering how information is processed, in addition to the content of that information, when predicting beauty, but also suggests an unexpectedly complex relationship between fluency and beauty.


Assuntos
Arte , Julgamento , Julgamento/fisiologia , Cognição , Estética , Redes Neurais de Computação
8.
Nat Commun ; 14(1): 8293, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097601

RESUMO

Ubiquitin widely modifies proteins, thereby regulating most cellular functions. The complexity of ubiquitin signalling necessitates unbiased methods enabling global detection of dynamic protein ubiquitylation. Here, we describe UBIMAX (UBiquitin target Identification by Mass spectrometry in Xenopus egg extracts), which enriches ubiquitin-conjugated proteins and quantifies regulation of protein ubiquitylation under precise and adaptable conditions. We benchmark UBIMAX by investigating DNA double-strand break-responsive ubiquitylation events, identifying previously known targets and revealing the actin-organizing protein Dbn1 as a major target of DNA damage-induced ubiquitylation. We find that Dbn1 is targeted for proteasomal degradation by the SCFß-Trcp1 ubiquitin ligase, in a conserved mechanism driven by ATM-mediated phosphorylation of a previously uncharacterized ß-Trcp1 degron containing an SQ motif. We further show that this degron is sufficient to induce DNA damage-dependent protein degradation of a model substrate. Collectively, we demonstrate UBIMAX's ability to identify targets of stimulus-regulated ubiquitylation and reveal an SCFß-Trcp1-mediated ubiquitylation mechanism controlled directly by the apical DNA damage response kinases.


Assuntos
Actinas , Ubiquitina , Ubiquitina/metabolismo , Actinas/metabolismo , Ubiquitinação , Transdução de Sinais , Dano ao DNA
9.
Transl Vis Sci Technol ; 12(9): 5, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37672251

RESUMO

Purpose: To evaluate the pharmacology and toxicology of SAF312, a transient receptor potential vanilloid 1 (TRPV1) antagonist. Methods: TRPV1 expression in human ocular tissues was evaluated with immunohistochemistry. Inhibition of calcium influx in Chinese hamster ovary (CHO) cells expressing human TRPV1 (hTRPV1) and selectivity of SAF312 were assessed by a fluorescent imaging plate reader assay. Ocular tissue and plasma pharmacokinetics (PK) were assessed following a single topical ocular dose of SAF312 (0.5%, 1.0%, 1.5%, 2.5%) in rabbits. Safety and tolerability of SAF312 were evaluated in rabbits and dogs. Effects of SAF312 on corneal wound healing after photorefractive keratectomy (PRK) surgery were assessed in rabbits. Results: TRPV1 expression was noted in human cornea and conjunctiva. SAF312 inhibited calcium influx in CHO-hTRPV1 cells induced by pH 5.5 (2-[N-morpholino] ethanesulfonic acid), N-arachidonoylethanolamine, capsaicin, and N-arachidonoyl dopamine, with IC50 values of 5, 10, 12, and 27 nM, respectively, and inhibition appeared noncompetitive. SAF312 demonstrated high selectivity for TRPV1 (>149-fold) over other TRP channels. PK analysis showed highest concentrations of SAF312 in cornea and conjunctiva. SAF312 was found to be safe and well tolerated in rabbits and dogs up to the highest feasible concentration of 2.5%. No delay in wound healing after PRK was observed. Conclusions: SAF312 is a potent, selective, and noncompetitive antagonist of hTRPV1 with an acceptable preclinical safety profile for use in future clinical trials. Translational Relevance: SAF312, which was safe and well tolerated without causing delay in wound healing after PRK in rabbits, may be a potential therapeutic agent for ocular surface pain.


Assuntos
Cálcio , Túnica Conjuntiva , Canais de Cátion TRPV , Animais , Cricetinae , Cães , Humanos , Coelhos , Células CHO , Cricetulus , Canais de Cátion TRPV/antagonistas & inibidores
10.
iScience ; 26(10): 107901, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766996

RESUMO

In humans, femininity shapes women's interactions with both genders, but its influence on animals remains unknown. Using 10 years of data on a wild primate, we developed an artificial intelligence-based method to estimate facial femininity from naturalistic portraits. Our method explains up to 30% of the variance in perceived femininity in humans, competing with classical methods using standardized pictures taken under laboratory conditions. We then showed that femininity estimated on 95 female mandrills significantly correlated with various socio-sexual behaviors. Unexpectedly, less feminine female mandrills were approached and aggressed more frequently by both sexes and received more male copulations, suggesting a positive valuation of masculinity attributes rather than a perception bias. This study contributes to understand the role of femininity on animal's sociality and offers a framework for non-invasive research on visual communication in behavioral ecology.

11.
Arch Pathol Lab Med ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37638545

RESUMO

CONTEXT.­: Loose tumor cells and tumor cell clusters can be recognized in the lumen of intratumoral pulmonary arteries of resected non-small cell lung cancer specimens. It is unclear whether these should be considered tumor-emboli, and as such could predict a worsened prognosis. OBJECTIVE.­: To investigate the nature and prognostic impact of pulmonary artery intraluminal tumor cells. DESIGN.­: This multicenter study involved an exploratory pilot study and a validation study from 3 institutions. For the exploratory pilot, a retrospective pulmonary resection cohort of primary adenocarcinomas, diagnosed between November 2007 and November 2010, were scored for the presence of tumor cells, as well as potentially other cells in the intravascular spaces using hematoxylin-eosin, and cytokeratin 7 (CK7) stains. In the validation part, 2 retrospective cohorts of resected pulmonary adenocarcinomas, between January 2011 and December 2016, were included. Recurrence-free survival (RFS) and overall survival (OS) data were collected. RESULTS.­: In the pilot study, CK7+ intravascular cells, mainly tumor cells, were present in 23 of 33 patients (69.7%). The 5-year OS for patients with intravascular tumor cells was 61%, compared with 40% for patients without intravascular tumor cells (P = .19). In the validation study, CK7+ intravascular tumor cells were present in 41 of 70 patients (58.6%). The 5-year RFS for patients with intravascular tumor cells was 80.0%, compared with 80.6% in patients without intravascular tumor cells (P = .52). The 5-year OS rates were, respectively, 82.8% and 71.6% (P = .16). CONCLUSIONS.­: Loose tumor cells in pulmonary arterial lumina were found in most non-small cell lung cancer resection specimens and were not associated with a worse RFS or OS. Therefore, most probably they represent an artifact.

12.
Neuron ; 111(15): 2312-2328, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37236178

RESUMO

N-Methyl-D-aspartate ionotropic glutamate receptors (NMDARs) play key roles in synaptogenesis, synaptic maturation, long-term plasticity, neuronal network activity, and cognition. Mirroring this wide range of instrumental functions, abnormalities in NMDAR-mediated signaling have been associated with numerous neurological and psychiatric disorders. Thus, identifying the molecular mechanisms underpinning the physiological and pathological contributions of NMDAR has been a major area of investigation. Over the past decades, a large body of literature has flourished, revealing that the physiology of ionotropic glutamate receptors cannot be restricted to fluxing ions, and involves additional facets controlling synaptic transmissions in health and disease. Here, we review newly discovered dimensions of postsynaptic NMDAR signaling supporting neural plasticity and cognition, such as the nanoscale organization of NMDAR complexes, their activity-dependent redistributions, and non-ionotropic signaling capacities. We also discuss how dysregulations of these processes may directly contribute to NMDAR-dysfunction-related brain diseases.


Assuntos
Receptores de N-Metil-D-Aspartato , Transdução de Sinais , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/fisiologia , Transmissão Sináptica , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo
14.
Front Psychol ; 14: 992541, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844320

RESUMO

In recent years, computer science has made major advances in understanding drawing behavior. Artificial intelligence, and more precisely deep learning, has displayed unprecedented performance in the automatic recognition and classification of large databases of sketches and drawings collected through touchpad devices. Although deep learning can perform these tasks with high accuracy, the way they are performed by the algorithms remains largely unexplored. Improving the interpretability of deep neural networks is a very active research area, with promising recent advances in understanding human cognition. Deep learning thus offers a powerful framework to study drawing behavior and the underlying cognitive processes, particularly in children and non-human animals, on whom knowledge is incomplete. In this literature review, we first explore the history of deep learning as applied to the study of drawing along with the main discoveries in this area, while proposing open challenges. Second, multiple ideas are discussed to understand the inherent structure of deep learning models. A non-exhaustive list of drawing datasets relevant to deep learning approaches is further provided. Finally, the potential benefits of coupling deep learning with comparative cultural analyses are discussed.

15.
Data Brief ; 47: 108939, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36819896

RESUMO

The Mandrillus Project is a long-term field research project in ecology and evolutionary biology, monitoring, since 2012, a natural population of mandrills (Mandrillus sphinx; primate) located in Southern Gabon. The Mandrillus Face Database was launched at the beginning of the project and now contains 29,495 photographic portraits collected on 397 individuals from this population, from birth to death for some of them. Portrait images have been obtained by manually processing images taken in the field with DSLR cameras: faces have been cropped to remove the ears and rotated to align the eyes horizontally. The database provides portrait images resized to 224 × 224 pixels associated with several manually annotated labels: individual identity, sex, age, face view, and image quality. Labels are stored within the image metadata and in a table accompanying the image database. This database will allow training and comparing methods on individual and sex recognition, and age prediction in a non-human animal.

16.
Nat Commun ; 14(1): 381, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693839

RESUMO

Fanconi Anemia (FA) is a rare, genome instability-associated disease characterized by a deficiency in repairing DNA crosslinks, which are known to perturb several cellular processes, including DNA transcription, replication, and repair. Formaldehyde, a by-product of metabolism, is thought to drive FA by generating DNA interstrand crosslinks (ICLs) and DNA-protein crosslinks (DPCs). However, the impact of formaldehyde on global cellular pathways has not been investigated thoroughly. Herein, using a pangenomic CRISPR-Cas9 screen, we identify EXO1 as a critical regulator of formaldehyde-induced DNA lesions. We show that EXO1 knockout cell lines exhibit formaldehyde sensitivity leading to the accumulation of replicative stress, DNA double-strand breaks, and quadriradial chromosomes, a typical feature of FA. After formaldehyde exposure, EXO1 is recruited to chromatin, protects DNA replication forks from degradation, and functions in parallel with the FA pathway to promote cell survival. In vitro, EXO1-mediated exonuclease activity is proficient in removing DPCs. Collectively, we show that EXO1 limits replication stress and DNA damage to counteract formaldehyde-induced genome instability.


Assuntos
Sistemas CRISPR-Cas , Tolerância a Medicamentos , Exodesoxirribonucleases , Anemia de Fanconi , Formaldeído , Humanos , DNA , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Anemia de Fanconi/induzido quimicamente , Anemia de Fanconi/genética , Formaldeído/toxicidade , Instabilidade Genômica/efeitos dos fármacos , Instabilidade Genômica/genética , Tolerância a Medicamentos/genética
17.
Elife ; 112022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36377479

RESUMO

Behavioral discrimination of kin is a key process structuring social relationships in animals. In this study, we provide evidence for discrimination towards non-kin by third-parties through a mechanism of phenotype matching. In mandrills, we recently demonstrated increased facial resemblance among paternally related juvenile and adult females indicating adaptive opportunities for paternal kin recognition. Here, we hypothesize that mandrill mothers use offspring's facial resemblance with other infants to guide offspring's social opportunities towards similar-looking ones. Using deep learning for face recognition in 80 wild mandrill infants, we first show that infants sired by the same father resemble each other the most, independently of their age, sex or maternal origin, extending previous results to the youngest age class. Using long-term behavioral observations on association patterns, and controlling for matrilineal origin, maternal relatedness and infant age and sex, we then show, as predicted, that mothers are spatially closer to infants that resemble their own offspring more, and that this maternal behavior leads to similar-looking infants being spatially associated. We then discuss the different scenarios explaining this result, arguing that an adaptive maternal behavior is a likely explanation. In support of this mechanism and using theoretical modeling, we finally describe a plausible evolutionary process whereby mothers gain fitness benefits by promoting nepotism among paternally related infants. This mechanism, that we call 'second-order kin selection', may extend beyond mother-infant interactions and has the potential to explain cooperative behaviors among non-kin in other social species, including humans.


Assuntos
Mandrillus , Humanos , Adulto , Feminino , Animais , Comportamento Social , Fenótipo , Comportamento Cooperativo , Comportamento Materno
18.
Animals (Basel) ; 12(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36290146

RESUMO

Drawings have been widely used as a window to the mind; as such, they can reveal some aspects of the cognitive and emotional worlds of other animals that can produce them. The study of non-human drawings, however, is limited by human perception, which can bias the methodology and interpretation of the results. Artificial intelligence can circumvent this issue by allowing automated, objective selection of features used to analyze drawings. In this study, we use artificial intelligence to investigate seasonal variations in drawings made by Molly, a female orangutan who produced more than 1299 drawings between 2006 and 2011 at the Tama Zoological Park in Japan. We train the VGG19 model to first classify the drawings according to the season in which they are produced. The results show that deep learning is able to identify subtle but significant seasonal variations in Molly's drawings, with a classification accuracy of 41.6%. We use VGG19 to investigate the features that influence this seasonal variation. We analyze separate features, both simple and complex, related to color and patterning, and to drawing content and style. Content and style classification show maximum performance for moderately complex, highly complex, and holistic features, respectively. We also show that both color and patterning drive seasonal variation, with the latter being more important than the former. This study demonstrates how deep learning can be used to objectively analyze non-figurative drawings and calls for applications to non-primate species and scribbles made by human toddlers.

19.
Front Bioinform ; 2: 813494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304321

RESUMO

Single molecule localization (SML) and tracking (SPT) techniques, such as (spt)PALM, (u/DNA)PAINT and quantum dot tracking, have given unprecedented insight into the nanoscale molecular organization and dynamics in living cells. They allow monitoring individual proteins with millisecond temporal resolution and high spatial resolution (<30 nm) by precisely localizing the point spread function (PSF) of individual emitters and tracking their position over time. While SPT methods have been extended to study the temporal dynamics and co-organization of multiple proteins, conventional experimental setups are restricted in the number of proteins they can probe simultaneously and usually have to tradeoff between the number of colors, the spatio-temporal resolution, and the field of view. Yet, localizing and tracking several proteins simultaneously at high spatial and temporal resolution within large field of views can provide important biological insights. By employing a dual-objective spectral imaging configuration compatible with live cell imaging combined with dedicated computation tools, we demonstrate simultaneous 3D single particle localization and tracking of multiple distinct species over large field of views to be feasible without compromising spatio-temporal resolution. The dispersive element introduced into the second optical path induces a spectrally dependent displacement, which we used to analytically separate up to five different fluorescent species of single emitters based on their emission spectra. We used commercially available microscope bodies aligned one on top of the other, offering biologists with a very ergonomic and flexible instrument covering a broad range of SMLM applications. Finally, we developed a powerful freely available software, called PALMTracer, which allows to quantitatively assess 3D + t + λ SMLM data. We illustrate the capacity of our approach by performing multi-color 3D DNA-PAINT of fixed samples, and demonstrate simultaneous tracking of multiple receptors in live fibroblast and neuron cultures.

20.
Zootaxa ; 5144(1): 1-103, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36095768

RESUMO

Numerous photographs of live fishes posted by anglers and divers on social media and citizen science databases are important sources of information for ichthyological research. However, validating records that extend the known ecology and bathymetric or geographic distribution of species should rely on a rigorous identification process. The family Gobiidae, with their small size, superficial resemblance among species and high species richness are particularly difficult to identify. Therefore, the identification from photographs of live individuals of Mediterranean marine gobies from the continental shelf was studied. A dichotomous identification key is provided based on photographs of live individuals, allowing positive identification of 41 out of the 66 species reviewed in this publication. Then, for all 66 species we provide a brief description of important characters, which can be used for provisional identification for those species that could not be positively identified using the key. Pending further progress in identification of live individuals, we suggest that records extending the known geographic and ecological species distribution be taken into account only if they could be validated using the dichotomous identification key.


Assuntos
Ciência do Cidadão , Perciformes , Animais , Peixes , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...