Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
4.
Sci Total Environ ; 864: 160968, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549541

RESUMO

Natural toxicants, particularly methoxy phenols (MPs) generated by wildfire lignin, can accumulate in the environment, and cause serious health hazards in living organisms. Although the toxicity of MPs such as guaiacol and catechol has recently been described, there is minimal evidence of ecotoxicological effects of syringol. As a result, this study focuses on determining the toxicity by evaluating the cytotoxic and teratogenic effects of syringol in vitro and in vivo in human embryonic kidney (HEK-293) cells and zebrafish embryos, respectively. The ecotoxicity of syringol was predicted to be 63.8 mg/L using the ECOSAR (ECOlogical Structure Activity Relationship) prediction tool, and molecular docking analysis was used to determine the interaction and binding affinities of syringol with human apoptotic proteins in silico. In HEK-293 cells, exposure of syringol (0.5-2 mg/L) has induced cytotoxicity in a concentration-dependent manner. In zebrafish larvae, exposure of syringol (0.5-2 mg/L) has induced dose-dependent embryo toxic effects (or growth abnormalities such as yolk sac edema, pericardial edema, skeletal abnormality, and hyperemia), and changes in growth morphometrics (head height, eye, yolk sac, and pericardial area, heart rate) in particular, the heart rate of larvae was found to be significantly decreased (p<0.001). After a 4-day experimental trial, the accumulated concentration of syringol in zebrafish larvae was confirmed both qualitatively (HPLC-MS - High Performance Liquid Chromatography-Mass spectrometry) and quantitatively (LC-QTOF-HRMS - Liquid Chromatography-Quadrupolar Time of Flight-High Resolution Mass spectrometry). The craniofacial abnormalities induced by syringol exposure (0.5-2 mg/L) were detected as anomalies in cartilaginous development and locomotor deficits using alcian blue staining and locomotor analyses, respectively. Significant increase in oxidative stress parameters (including reactive oxygen species generation, lipid peroxidation, superoxide dismutase, catalase, lactate dehydrogenase and nitric oxide production) (p<0.001) and substantial decrease in glutathione levels were observed (p<0.05) in syringol exposed zebrafish larvae through enzymatic analysis. Additionally, through acridine orange staining and gene expression analyses, syringol (2 mg/L) was found to activate apoptosis in zebrafish larvae. Considering the cytotoxic, embryotoxic (teratogenicity), and oxidative stress-related apoptotic effects of syringol in the zebrafish model, syringol has the potential to emerge as a potent environmental toxicant posing serious health hazards in many living systems; however, further research on its toxicological effects on the actual ecosystem and in higher animal models is required to confirm its consequences.


Assuntos
Teratogênese , Incêndios Florestais , Animais , Humanos , Peixe-Zebra , Ecossistema , Células HEK293 , Simulação de Acoplamento Molecular , Embrião não Mamífero , Estresse Oxidativo , Larva
5.
Chem Biodivers ; 20(1): e202200959, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36574474

RESUMO

Antioxidant natural products and their analogs especially phenolic compounds, exhibit diverse biological properties, including anti-inflammatory, antioxidant, and anticancer activities. Ginger which is widely used worldwide for various beneficial effects also contains several phenolic antioxidants, and 6-gingerol is one of the natural products studied extensively. However, the molecular mechanism of synthetically synthesized 6-gingerdione (compound 1) from 6-gingerol was not known. In this study, compound 1 and methylated 6-gingerdione (compound 2) were obtained semi synthetically from 6-gingerol. Compound 1 and 2 are subjected to SwissADME prediction. Then the protective effect of compound 1 was analyzed in 2 % EtOH induced HepG2 cells and zebrafish larvae. Hydroxyl and nitric oxide scavenging assays reveal that compound 1 showed more antioxidant activity than compound 2 at 50 µM. Moreover, compound 1 exhibited good anti-inflammatory activity via lipoxygenase inhibition and proteinase inhibition. Apoptosis and oxidative stress in HepG2 cells were induced by 2 % EtOH and treated with compound 1. Compound 1 significantly inhibited the EtOH induced nitric oxide production, apoptosis, and ROS generation in HepG2 cells. Encouraged by the in-vitro antioxidant and anti-inflammatory activities, compound 1 was then investigated for its protective effect in 2 % EtOH induced ALD zebrafish larva. Compound 1 protected the zebrafish larvae from liver injury by suppressing inflammatory (COX-2, TNF-α, and IL-1ß) and lipogenic genes (C/EBP-α, SREBP1, and IL-1ß) while upregulating the antioxidant gene. Our findings indicate that compound 1 synthesized from 6-gingerol ameliorated liver injury that likely, contributes to its potential antioxidant and anti-inflammatory properties.


Assuntos
Antioxidantes , Peixe-Zebra , Animais , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Peixe-Zebra/metabolismo , Citocinas/metabolismo , Larva , Óxido Nítrico/metabolismo , Células Hep G2 , Fígado , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Expressão Gênica
6.
Cell Biol Int ; 47(1): 123-134, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36177496

RESUMO

Aminoglycoside antibiotics such as gentamicin are used frequently to treat bacterial infections in humans. Excessive consumption of these antibiotics lead to renal dysfunction. One of the factors contributing to renal dysfunction is oxidative damage, which causes apoptosis. Hence, this study investigates the effect of the antioxidant compound deacetyl epoxyazadiradione (DEA) in reducing cell death induced by gentamicin treatment in kidney cells (Madin-Darby canine kidney cells). The antioxidant experiments showed that reactive oxygen species level is decreased up to 27.06 ± 0.18% in 150 µM of DEA treatment. At this concentration, the activity of antioxidant enzymes such as superoxide dismutase increased from 0.4 ± 0.04 to 1.46 ± 0.05 µmol/min/L and catalase increased from 7.48 ± 0.39 to 17.6 ± 0.74 U/mg. The relative folds of gene expression of mitochondrial enzymes such as GST, GPx and GR restored from 0.596 ± 0.019, 0.521 ± 0.013 and 0.775 ± 0.014 to 0.866 ± 0.013, 0.669 ± 0.015 and 0.8615 ± 0.028, respectively. Consequently, the percentage of cell viability increases upto 91.8 ± 2.01 from 61.93 ± 1.63 with much less fragmentation in genomic DNA. Additionally, molecular docking results showed that DEA could bind to Bax, Bcl- 2, Caspase- 3 and Caspase- 9 proteins. These results indicate that DEA could reduce cell apoptosis by reducing oxidative stress due to antibiotics and interrupting the apoptotic signal pathway in kidney cells.


Assuntos
Antioxidantes , Nefropatias , Humanos , Animais , Cães , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Rim/metabolismo , Apoptose , Estresse Oxidativo , Antibacterianos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Gentamicinas/metabolismo , Gentamicinas/farmacologia , Nefropatias/metabolismo
7.
Molecules ; 27(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36364155

RESUMO

In this study, the anti-cancer and anti-inflammatory activities of PS14, a short peptide derived from the cellulase binding domain of pathogenic fungus, Aphanomyces invadans, have been evaluated, in vitro and in vivo. Bioinformatics analysis of PS14 revealed the physicochemical properties and the web-based predictions, which indicate that PS14 is non-toxic, and it has the potential to elicit anti-cancer and anti-inflammatory activities. These in silico results were experimentally validated through in vitro (L6 or Hep-2 cells) and in vivo (zebrafish embryo or larvae) models. Experimental results showed that PS14 is non-toxic in L6 cells and the zebrafish embryo, and it elicits an antitumor effect Hep-2 cells and zebrafish embryos. Anticancer activity assays, in terms of MTT, trypan blue and LDH assays, showed a dose-dependent inhibitory effect on cell proliferation. Moreover, in the epithelial cancer cells and zebrafish embryos, the peptide challenge (i) caused significant changes in the cytomorphology and induced apoptosis; (ii) triggered ROS generation; and (iii) showed a significant up-regulation of anti-cancer genes including BAX, Caspase 3, Caspase 9 and down-regulation of Bcl-2, in vitro. The anti-inflammatory activity of PS14 was observed in the cell-free in vitro assays for the inhibition of proteinase and lipoxygenase, and heat-induced hemolysis and hypotonicity-induced hemolysis. Together, this study has identified that PS14 has anti-cancer and anti-inflammatory activities, while being non-toxic, in vitro and in vivo. Future experiments can focus on the clinical or pharmacodynamics aspects of PS14.


Assuntos
Aphanomyces , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Hemólise , Apoptose , Células Epiteliais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Peptídeos/farmacologia , Celulose/metabolismo , Embrião não Mamífero
8.
Mol Biol Rep ; 49(12): 11867-11879, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36224446

RESUMO

BACKGROUND: Pancreatic ß-cells are susceptible to oxidative stress, leading to ß-cell death and dysfunction due to enhanced ROS levels and type 2 diabetes. To inhibit the ß-cells damages induced by the oxidative stress, the present study investigates the beneficial effect of various peptides (WL15, RF13, RW20, IW13 and MF18) of immune related proteins (cysteine and glycine-rich protein 2, histone acetyltransferase, vacuolar protein sorting associated protein 26B, serine threonine-protein kinase and CxxC zinc finger protein, respectively). Also, the molecular mechanism of WL15 from cysteine and glycine-rich protein 2 on ß-cell regeneration was identified through PEPCK and insulin pathway. MATERIALS AND METHODS: In this study, a total of five peptides including WL15, RF13, RW20, IW13, and MF18 were derived from immune-related proteins such as cysteine and glycine-rich protein 2, histone acetyltransferase, vacuolar protein sorting associated protein 26B, serine threonine-protein kinase and CxxC zinc finger protein, respectively. These protein sequences were obtained from an earlier constructed transcriptome database of a teleost Channa striatus. The identified peptides were evaluated for their antioxidant as well as antidiabetic activity. Based on the in silico analysis and in-vitro screening experiments, WL15 was predicted to have better antioxidant and antidiabetic activity among the five different peptides. Therefore, WL15 alone was further analyzed for apoptosis, antioxidant capacity, glucose metabolism, and gene expression performance, which was investigated on the alloxan (500 µM) induced zebrafish in vivo larval model. RESULTS: The results showed alloxan exposure to zebrafish larvae for a day, the ROS was generated in the ß-cells. Interestingly, WL15 treatment showed a protective effect by reducing the toxicity of alloxan exposed zebrafish larvae by increasing their survival and heart rate. Moreover, WL15 reduced the intracellular ROS level and apoptosis in alloxan-induced larvae. The superoxide anion and lipid peroxidation levels are also reduced by improving the glutathione content after the WL15 treatment. Besides, WL15 treatment increased the proliferation rate of ß-cells and decreased the glucose level. Further, the gene expression studies revealed that WL15 treatment normalized the PEPCK expression while upregulating the insulin expression in alloxan exposed larvae. CONCLUSION: Overall, the findings indicate that WL15 of cysteine and glycine-rich protein 2 can act as a potential antioxidant for type 2 diabetes patients in respect of improving ß-cell regeneration.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Ratos , Aloxano/efeitos adversos , Antioxidantes/farmacologia , Diabetes Mellitus Experimental/metabolismo , Histona Acetiltransferases/metabolismo , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Larva/metabolismo , Estresse Oxidativo , Proteínas Quinases/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
9.
Neurosci Lett ; 790: 136889, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36179902

RESUMO

Exogenous toxicants cause oxidative stress and damage to brain cells, resulting in inflammation. Neuroinflammation is important in the pathobiology of various neurological illnesses, including Alzheimer's disease (AD). In this context, Bisphenol A (BPA), a common toxin, causes oxidative damage and has been linked to neurological problems. An O-methylated isoflavone known as Biochanin A (5,7-dihydroxy-4'-methoxy-isoflavone, BCA) is considered to be a phytoestrogen, which is abundant in some legume plants and soy which have preventive effects against cancer, osteoporosis, menopausal symptoms and oxidative stress. However, the mechanism by which BCA protected the prenatal neurological stress are not known. So that, in this study we investigated the BCA neuroprotective effect against BPA-induced neuroinflammation in zebrafish embryo models. For this study, fertilized zebrafish embryos are exposed to BPA (1 µM) with or without BCA. Our finding suggested that BCA co-exposure prevented the depletion of antioxidant defense enzymes by BPA and reduced the production of intracellular ROS production, superoxide anion (O2-), lipid peroxidation (LPO), lactate dehydrogenase (LDH) and nitric oxide (NO) levels in the head that aided in safeguarding neuronal development. Baseline locomotion was rendered and a total distance was calculated to assess the motor function. Exposure to BCA increased acetylcholinestrase (AChE) and improved motor neuron functions. It also reduced the pro-inflammatory response expression and prevented neuroinflammation. Our study suggests that BCA has a positive role in the attenuation or amelioration of neuronal oxidative damage and locomotory behaviour induced by BPA.


Assuntos
Fármacos Neuroprotetores , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fitoestrógenos/farmacologia , Fitoestrógenos/metabolismo , Superóxidos/metabolismo , Superóxidos/farmacologia , Óxido Nítrico/metabolismo , Compostos Benzidrílicos/toxicidade , Estresse Oxidativo , Genisteína/farmacologia , Locomoção , Lactato Desidrogenases/metabolismo
10.
Microb Pathog ; 172: 105778, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36116607

RESUMO

Infections due to multidrug-resistant Pseudomonas aeruginosa are prevalent among patients with cystic fibrosis. The emergence of antibiotic-resistant pathogens necessitated the development of novel low-risk natural antibacterial compounds. Herbal medicines are used from dates of the origin of mankind and still serve their purpose as therapeutic agents. We demonstrated the antibacterial activity of Withaferin A extracted from the traditional herb, ashwagandha or winter cherry (Withania somnifera). Withaferin A exhibits strong antibacterial activity against P. aeruginosa with a minimum inhibitory concentration of 60 µM and minimum bactericidal concentration of 80 µM. Results obtained from membrane stabilization assay and electron microscopic analysis showed that Withaferin A acts by damaging the cell membrane of P. aeruginosa. Additionally, we investigated oxidative stress and inflammatory response after Withaferin A treatment in P. aeruginosa infected zebrafish larvae model. The results indicate that the level of ROS, and its related lipid peroxidation and apoptosis were significantly reduced after treated with Withaferin A. Consequently, an increment in antioxidant enzymes level such as superoxide dismutase (SOD) and catalase (CAT) was observed. Macrophage localization experiment showed a smaller number of localized macrophages in zebrafish, which indicates the reduction in inflammatory response. In conclusion, Withaferin A could serve as an alternative natural product in the treatment of infections caused by P. aeruginosa.


Assuntos
Produtos Biológicos , Withania , Animais , Pseudomonas aeruginosa , Peixe-Zebra , Catalase , Larva , Antioxidantes , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Inflamação , Superóxido Dismutase
11.
Artigo em Inglês | MEDLINE | ID: mdl-36087706

RESUMO

Copper sulfate (CuSO4) as industrial effluent is intentionally or unintentionally released into water bodies and accumulates in the fish. Because of its numerous applications, CuSO4 can be hazardous to non-target creatures, producing direct alterations in fish habitats. Acacetin is a flavonoid present in all vascular plants that are extensively dispersed in plant pigments and responsible for many natural hues. However, the impact of acacetin on mitigating the toxic effect of CuSO4 in the in-vivo conditions is not known. The toxicity of acacetin was determined by measuring the survival, deformities and heart rate after treatment with various concentrations to larvae. The protective effect of acacetin was also observed in CuSO4 exposed zebrafish larvae by reducing malformation, mortality rate and oxidative stress. Meanwhile, the acacetin-protected larvae from CuSO4 effects through the molecular mechanism by suppressing pro-inflammatory genes (COX-2, TNF-α and IL-1) and upregulating antioxidant genes (GPx, GST and GR). Overall, our findings suggest that acacetin can act as a protective barrier against CuSO4-induced inflammation in an in-vivo zebrafish larval model.


Assuntos
Sulfato de Cobre , Flavonas , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Cobre/farmacologia , Sulfato de Cobre/toxicidade , Ciclo-Oxigenase 2/farmacologia , Flavonas/farmacologia , Glutationa/metabolismo , Interleucina-1/farmacologia , Larva , Oxirredução , Estresse Oxidativo , Fator de Necrose Tumoral alfa/genética , Água , Peixe-Zebra/metabolismo
12.
Toxicol Appl Pharmacol ; 454: 116229, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36089001

RESUMO

This study aims to evaluate the protective behaviour of N2, a semi-natural analog of nimbin, for its anti-diabetic efficacy against alloxan-induced oxidative damage and ß-cell dysfunction in in-vivo zebrafish larvae. A 500 µM of alloxan was exposed to zebrafish larvae for 24 h to induce oxidative stress in the pancreatic ß-cells and co-exposed with N2 to study the protection of N2 by inhibiting ROS by DCFH-DA, DHE and NDA staining along with Cellular damage, apoptosis and lipid peroxidation. The zebrafish was further exposed to 500 µM alloxan for 72 h to induce ß-cell destruction along with depleted glucose uptake and co-exposed to N2 to study the protective mechanism. Glucose levels were estimated, and PCR was used to verify the mRNA expression of phosphoenolpyruvate carboxykinase (PEPCK) and insulin. Alloxan induced (24 h) oxidative stress in the pancreatic ß-cells in which N2's co-exposure inhibited ROS by eliminating O-2 radicals and restoring the glutathione levels, thus preventing cellular damage and lipid peroxidation. The zebrafish exposed to 500 µM alloxan for 72 h was observed with ß-cell destruction along with depleted glucose uptake when stained with 2NBDG, wherein N2 was able to protect the pancreatic ß-cells from oxidative damage, promoted high glucose uptake and reduced glucose levels. N2 stimulated insulin production and downregulated PEPCK by inhibiting gluconeogenesis, attenuating post-prandial hyperglycemia. N2 may contribute to anti-oxidant protection against alloxan-induced ß-cell damage and anti-hyperglycemic activity, restoring insulin function and suppressing PEPCK expression.


Assuntos
Aloxano , Insulina , Aloxano/toxicidade , Animais , Antioxidantes , Glucose/metabolismo , Glutationa , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Larva/metabolismo , Limoninas , Fosfoenolpiruvato , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio , Peixe-Zebra/genética
13.
Chem Biodivers ; 19(9): e202200041, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36026548

RESUMO

Reactive oxygen species (ROS) produced by cell metabolism have a duplex role in oxidation and inflammation reactions which involve cell damage or repair responses. Excess ROS production has detrimental effects on the survival of cells. We examined the protective effect of a semi-natural compound NF2 (deacetylepoxyazadiradione), for its protective activity against free radical-mediated stress and inflammatory response to lipopolysaccharide (LPS) using zebrafish larvae. Preliminary antioxidant assays indicated an increase in scavenging of free radicals from NF2 than NF1 (Epoxyazadiradione) in a concentration-dependent manner. Cell cytotoxicity was determined using rat myoblast cell lines (L6), and more than 95 % of cell viability was obtained. Zebrafish developmental toxicity test indicated that NF2 is not toxic even at 150 µM. The percentage of ROS, lipid peroxidation, nitric oxide and apoptosis were reduced significantly in NF2 treated LPS-stressed zebrafish larvae. The reduced number of employed macrophages on NF2 treatment was observed in neutral red dye-marked macrophage localization images. Relative expression of antioxidant genes in zebrafish larvae after treatment with NF2 is significantly increased. The RT-PCR quantification of antioxidant and anti-inflammatory gene expression indicated decreased relative folds of pro-inflammatory cytokines, iNOS and increased relative folds of mitochondrial antioxidant genes (GR, GST and GPx) in LPS stressed zebrafish larvae after treatment with NF2. From the overall obtained results, it can be concluded that NF2 reduced the oxidative stress and inflammatory response by scavenging free radicals caused by LPS.


Assuntos
Azadirachta , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Citocinas/metabolismo , Frutas/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Larva , Limoninas , Lipopolissacarídeos/farmacologia , Vermelho Neutro/farmacologia , Óxido Nítrico , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/metabolismo
14.
Mol Biol Rep ; 49(10): 9205-9215, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35941417

RESUMO

BACKGROUND: Most of the bioactive peptides exhibit antioxidant effect and do elicit inhibitory effect on proliferation of cancer cells. This study investigates the in-vitro antioxidant and anti-cancer properties of NV14 peptide, derived from serine O-acetyltransferase (SAT) of spirulina, Arthrospira platensis. METHODS: The anti-cancer effect of the peptide was evaluated using human adenocarcinoma epithelial cells (MCF-7), while the anti-oxidant potential, as in reduction in ROS concentration, has been established using the H2O2-exposed, Madin-Darby canine kidney (MDCK) cells. The outcome of the in vitro analyses has been evaluated by in silico molecular docking analyses. RESULTS: The peptide, dose-dependently, reduced oxidative stress as well as cell proliferation. Besides, based on the binding scores between NV14 peptide and the important proteins associated with apoptosis and antioxidant defense, it is evident that the peptide has antioxidant and anti-cancer effect, in vitro. CONCLUSIONS: Together, this study demonstrates that NV14 has a potent antioxidant and anti-cancer capability; however, further direction needs to be focused on clinical or pharmacodynamics aspects.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Animais , Antioxidantes/metabolismo , Caspases/metabolismo , Proliferação de Células , Cães , Expressão Gênica , Humanos , Peróxido de Hidrogênio/farmacologia , Células MCF-7 , Células Madin Darby de Rim Canino , Simulação de Acoplamento Molecular , Estresse Oxidativo , Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina O-Acetiltransferase/metabolismo , Serina O-Acetiltransferase/farmacologia
15.
Mol Biol Rep ; 49(8): 7425-7435, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716287

RESUMO

BACKGROUND: Boswellia serrate is an ancient and highly valued ayurvedic herb. Its extracts have been used in medicine for centuries to treat a wide variety of chronic inflammatory diseases. However, the mechanism by which B. serrata hydro alcoholic extract inhibited pro-inflammatory cytokines in zebrafish (Danio rerio) larvae with LPS-induced inflammation remained unknown. METHODS: LC-MS analysis was used to investigate the extract's phytochemical components. To determine the toxicity of B. serrata extract, cytotoxicity and embryo toxicity tests were performed. The in-vivo zebrafish larvae model was used to evaluate the antioxidant and anti-inflammatory activity of B. serrata extract. RESULTS: According to an in silico study using molecular docking and ADMET, the compounds acetyl-11-keto-boswellic and 11-keto-beta-boswellic acid present in the extract had higher binding affinity for the inflammatory specific receptor, and it is predicted to be an orally active molecule. In both in-vitro L6 cells and in-vivo zebrafish larvae, 160 µg/mL concentration of extract caused a high rate of lethality. The extract was found to have a protective effect against LPS-induced inflammation at concentrations ranged between 10 and 80 µg/mL. In zebrafish larvae, 80 µg/mL of treatment significantly lowered the level of intracellular ROS, apoptosis, lipid peroxidation, and nitric oxide. Similarly, zebrafish larvae treated with B. serrata extract (80 µg/mL) showed an increased anti-inflammatory activity by lowering inflammatory specific gene expression (iNOS, TNF-α, COX-2, and IL-1). CONCLUSIONS: Overall, our findings suggest that B. serrata can act as a potent redox scavenger against LPS-induced inflammation in zebrafish larvae and an inhibitor of specific inflammatory genes.


Assuntos
Boswellia , Triterpenos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Boswellia/química , Citocinas/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Larva , Lipopolissacarídeos/toxicidade , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Triterpenos/química , Peixe-Zebra
16.
Mol Cell Biochem ; 477(10): 2387-2401, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35575874

RESUMO

Alcoholic liver disease is one of the most prominent liver diseases in the world. Lipid accumulation accompanied by oxidative stress and inflammation in the liver is the most important pathogenesis of ALD. This study was designed to investigate the anti-oxidative, fat metabolism-regulating, and anti-inflammatory potential of N2, a seminatural analog of Nimbin. The ethanol exposure was found to induce liver injury on zebrafish larvae, such as liver inflammation, lipid accumulation, oxidative stress, and hepatocytes apoptosis. N2 was subjected to ADMET screening in-silico, and it was observed N2's co-exposure decreased the ROS, apoptosis, lipid peroxidation, and macrophage accumulation in the liver of larval zebrafish. To further study the mechanism behind ethanol hepatotoxicity and the hepatoprotective behavior of N2, gene expression changes were determined in zebrafish. The results of this study revealed that ethanol exposure upregulated mRNA expressions of SREBP1, C/EBP-α, FAS and provoked more severe oxidative stress and hepatitis via upregulation of inflammatory cytokines TNF-α, IL-10, IL-1ß, iNOS, COX-2. However, the N2 co-exposure protected the hepatocyte damage and almost reversed the condition by downregulating the mRNA levels. The study suggested that N2 could be an effective therapeutic agent for the treatment of ALD and other inflammatory conditions.


Assuntos
Hepatopatias Alcoólicas , Peixe-Zebra , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Etanol/toxicidade , Inflamação/metabolismo , Interleucina-10/metabolismo , Larva/metabolismo , Limoninas , Metabolismo dos Lipídeos , Lipídeos , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra/genética
17.
Brain Res ; 1788: 147941, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35550141

RESUMO

Acrylamide is a thermal process contaminant, which gets global attention due to its neurotoxic nature and its omnipresence in carbohydrate-rich foods. Chronic exposure to acrylamide leads to neuronal deterioration and motor dysfunction. Acrylamide could severely affect the antioxidant defense system, especially in the developing brain leading to premature neurological disorders. Acrylamide forms adduct in presynaptic neurons leading to neuroinflammation which is also a factor to consider. In this present study, we have explored whether our benzo[b]thiophene analogs, 1-(3-hydroxybenzo[b]thiophen-2-yl) ethanone (BP) and 1-(3-hydroxybenzo[b]thiophen-2-yl) propan-1-one hydrate (EP) with antioxidant activity, could inhibit the acrylamide-induced neurotoxicity-like behavior in zebrafish larvae. The experiment was set up to expose 3 days post fertilized (dpf) larvae to acrylamide (0.75 mM) for 3 days with or without compounds (80 µM). Locomotion behavioral analysis, antioxidants, glutathione, and acetylcholineesterase activity in the head region were analyzed after one day of the experimental procedure. We witnessed a restoration effect on glutathione redox dynamics. Since glutathione plays a crucial role in the detoxification of acrylamide, it is necessary to maintain the glutathione redox cycle to eliminate acrylamide from the body. BP and EP reduced the pro-inflammatory transcript in the head, which correlates with the reduction in oxidative stress. Finally, BP and EP showed a positive effect on synaptic vesicle cycling transcript and partially restores the motor neuron response to stimuli. Findings in this study showed the ability of compound BP and EP possess therapeutic value in oxidative stress-associated neurological disorders.


Assuntos
Acrilamida , Síndromes Neurotóxicas , Acrilamida/toxicidade , Animais , Antioxidantes/metabolismo , Glutationa/metabolismo , Larva , Síndromes Neurotóxicas/tratamento farmacológico , Oxirredução , Estresse Oxidativo , Tiofenos/farmacologia , Peixe-Zebra/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-35523404

RESUMO

This study investigates the therapeutic activity of daidzein, an isoflavone that occurs naturally in plants and herbs, against gentamicin-induced nephrotoxicity in Madin-Darby canine kidney (MDCK) cells in-vitro and zebrafish model in-vivo. The in-vitro studies revealed that daidzein protected MDCK cells from gentamicin-induced inflammation by suppressing oxidative stress and apoptosis. The zebrafish were divided into groups and injected with gentamicin (140 mg/mL) to induce nephrotoxic conditions. After injection, renal dysfunction, nitric oxide production, antioxidant consumption, exaggerated apoptosis, and inflammation were all observed in the zebrafish model. We also observed that during kidney inflammation in zebrafish, pro-inflammatory cytokines such as cyclooxygenase (COX-2), tumor necrosis factor (TNF-α), and interleukin-1ß (IL-1ß) are upregulated. Furthermore, daidzein treatment after gentamicin injection showed a strong protective anti-inflammatory effect. Daidzein activity was associated with an increase in antioxidant biomarkers such as superoxide dismutase (SOD) and glutathione reductase (GSH), whereas lipid peroxidation (LPO) and nitric oxide (NO) production were decreased in a dose-dependent factor. Moreover, histopathological alteration caused by gentamicin in zebrafish kidneys was normalized due to daidzein treatment. Daidzein also downregulated the pro-inflammatory cytokines gene expression in gentamicin-induced kidney inflammation in zebrafish. These results revealed that daidzein could potentially prevent nephrotoxic conditions through pro-inflammatory cytokines inhibition and its antioxidant property.


Assuntos
Gentamicinas , Isoflavonas , Animais , Antioxidantes/metabolismo , Citocinas/genética , Citocinas/metabolismo , Cães , Gentamicinas/metabolismo , Gentamicinas/toxicidade , Inflamação/tratamento farmacológico , Isoflavonas/metabolismo , Isoflavonas/farmacologia , Rim , Óxido Nítrico/metabolismo , Estresse Oxidativo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra/metabolismo
19.
Microb Pathog ; 166: 105542, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35439554

RESUMO

Pseudomonas aeruginosa (PA) is an opportunistic pathogen that causes high mortality in cystic fibrosis patients. Treatment failures often occur due to the emergence of antibiotic resistance. Inhibition of virulence factors production without suppressing the growth of the pathogens is a potential alternative strategy to control the antibiotic resistance. In order to accomplish, three different interaction studies were performed using Bacillus subtilis BR4, PA and their extracellular contents. Firstly, co-cultivation was performed with different cell density of BR4 or PA. In co-culture setup (F), high cell density of BR4 significantly inhibits the biofilm formation of PA in a growth-independent manner (p < 0.01). To substantiate the biofilm inhibition, LC-MS/MS was performed and metabolic profile of monocultures and cocultures were compared. Multivariate analysis corroborated that metabolic profile of coculture setup (F) is drastically different from other coculture and monoculture setups. To check the effect of extracellular content of PA on BR4, supernatant of PA was extracted with ethyl acetate and different concentration of that extract (PA-EXT) was supplemented with BR4 culture. Exogenous supplementation PA-EXT (40 µg/mL) led to increased biofilm inhibitory activity (p < 0.01) in BR4. Further, to check the effect of extracellular content of BR4, PA was grown in the supernatant of BR4. PA survives in the spent media of BR4 without biofilm formation. Though 50% spent media of BR4 was replaced with fresh media, PA could not produce biofilm. In support of this, LC-MS/MS analysis has revealed that abundance of quorum sensing (QS) signals was reduced in the spent media grown PA than control. Furthermore, BR4 protects zebrafish larvae (Danio rerio) against PA infection and increases their survival rate (p < 0.05). We found that PA-induced oxidative stress and apoptosis were also significantly reduced in the BR4-pretreated larval group than control group. These results clearly indicate that BR4 exerts growth-independent QS inhibition in PA, suggesting that it could be used as a probiotic for future therapeutic interventions.


Assuntos
Probióticos , Pseudomonas aeruginosa , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bacillus subtilis/metabolismo , Biofilmes , Cromatografia Líquida , Humanos , Metabolômica , Percepção de Quorum , Espectrometria de Massas em Tandem , Fatores de Virulência/metabolismo , Peixe-Zebra
20.
Life Sci ; 298: 120507, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35358593

RESUMO

AIMS: This study aims to elucidate a systematic free-radical quenching ability of synthesized benzo[b]thiophene derivatives using in vitro assays and acrylamide induced oxidatively stressed model in zebrafish larvae. MATERIALS AND METHODS: Antioxidant activity of the compounds was evaluated using in vitro methods. The toxicity of the compounds was evaluated in Madin-Darby Canine Kidney (MDCK) cell line and zebrafish embryos. Oxidative stress was generated by acrylamide (1 mM) in zebrafish larvae and treated with compounds to evaluate the in vivo antioxidant ability. Specific fluorescence dyes were used to detect ROS generation, lipid peroxidation, and cell death followed by gene expression using RT PCR. Density functional theory (DFT) and in silico pharmacokinetics were also studied. KEY FINDINGS: Compound BP and EP have a greater in vitro free radical scavenging ability. The maximum tolerated concentration (MTC) of the compounds in zebrafish larvae is 80 µM. The antioxidant system in zebrafish larvae was dysregulated due to acrylamide exposure and improvement was found while treating acrylamide exposed larvae with compounds 1-(3-hydroxybenzo[b]thiophen-2-yl) ethanone (BP) and 1-(3-hydroxybenzo[b]thiophen-2-yl) propan-1-one hydrate (EP). Compound BP and EP enhanced the SOD and CAT activity, reduced the ROS and lipid peroxidation level, thus decreasing cell death in zebrafish larvae. Compound BP and EP also improved the glutathione redox cycle by stabilizing glutathione-related gene expressions. SIGNIFICANCE: Hydroxyl-containing compounds BP and EP are promising lead molecules for pathological conditions related to oxidative stress, which showed an attenuated effect on acrylamide-induced oxidative stress in zebrafish larvae by enhancing the glutathione redox cycle and enzymatic antioxidants.


Assuntos
Acrilamida , Peixe-Zebra , Acrilamida/toxicidade , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Cães , Glutationa/metabolismo , Radical Hidroxila/metabolismo , Larva , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Tiofenos/metabolismo , Tiofenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...